-
在较高的空间分辨率下的LIBS成像技术需要完成约10000组左右的光谱数据采集,因此需要缩短采集的周期。该过程的实现需要激光器、光谱仪、电动位移装置及光谱数据处理软件之间高速协同运行,因此,对整体硬件的要求相对较高,同时硬件间协同运行需要软件的开发,多数研究人员采用LabVIEW开发相应的软件控制整套系统去实现样本按照规划路线快速的运动,以及激光器和光谱仪的时序同步。
激光源的大小目前应用于元素成像系统的激光器多为红外(紫外)固体激光器、准分子激光器。虽然在相同激光功率密度下,波长越长,其电子温度及电子强度越强,光谱强度相对较高,有利于微量元素信号的检测,但是,红外光源对等离子体的激发多由于光热作用,对于生物组织,热效应会损害光束轰击区域周边的细胞活性,因此,对生物组织的检测主要是利用紫外波段光源。相同条件下,波长越短,空间分辨率越高。另外,有实验室利用飞秒激光器应用于特定样本分析,如BELLO等人利用飞秒脉冲激光检测牙齿中汞合金的扩散深度[24]。
LIBS成像技术空间分辨率的提高同样依赖于光路聚焦系统。研究者大多采用15倍聚焦透镜,高倍聚焦镜头有助于提高空间分辨率,已报道的光斑直径在7μm~50μm范围内,空间分辨率控制在10μm~100μm之间。而且,LIBS成像技术对光谱信号的要求也高。惰性气体的加入有助于提高减少光路中激光能量的损耗和光谱信号的稳定性,绝大多数相关实验中都会用到氩气(Ar)、氦气(He)等稳定性气体,法国里昂大学的SANCEY实验小组对聚焦光路及样本台中通入Ar,有效地提高了谱线信噪比[25]。
光谱仪的3个重要参量是:谱线范围、分辨率、积分时间。谱线范围定义了LIBS检测的度量能力,LIBS分析的主要元素相关的原子发射光谱范围在190nm~850nm。分辨率决定了光谱图分析电磁波谱中的特征,分辨能力R=λ/Δλ(λ为波长,Δλ为λ处的线宽),LIBS成像系统常用的光谱仪为Paschen-Runge光谱仪、Czerny-Turner光谱仪,并且配备增强型电荷耦合器件(intensified charge coupled device, ICCD),对检测极限的提高及高速扫描都有一定的作用。
对于面积较大的地质样本,维持每个像素点的激光能量的一致性是必要的,西班牙马德里孔普鲁顿大学的CACERES研究小组通过自动聚焦系统维持聚焦镜头与样本表面每个像素点的恒定距离[26]。
在LIBS成像技术中,激光源(波长、脉冲能量、稳定性)、光路系统及光谱仪对空间分辨率和检测灵敏度都有重要影响,考虑到样本类型、扫描区域的大小、成像的空间分辨率、检测的灵敏度以及时间等因素,研究人员可以结合各仪器以满足实验需要。表 1中回顾了几种常见的激光器、聚焦光路、光谱仪等类型及空间分辨率和检测限。
表 1 常用的LIBS扫描成像仪器类型
激光器(波长,脉宽,频率) 光谱仪 光路聚焦系统 空间分辨率/检测限 参考文献 四倍频Nd:YAG激光器(266nm,10Hz) Czerny-Turner型光谱仪CCD 15倍放大物镜 10μm/(2μg/g~16μg/g) [25] Nd:YAG激光器(1064nm, 5ns, 100Hz) 双Czerny-Turner型光谱仪ICCD 15倍放大物镜 10μm/(5μg/g~7μg/g) [26] 二倍频钛蓝宝石飞秒激光器(400nm, 175fs, 1kHz) Echelle型光谱仪ICCD 两种不同焦距的透镜组合(焦距f1=9.0mm,焦距f2=15.0mm) 6μm/— [27] 四倍频Nd:YAG激光器(266nm,2Hz) Czerny-Turner型光谱仪CCD 40μm/— [28] 四倍频Nd:YAG激光器(266nm);Nd:YAG激光器(1064nm)(正交) Czerny-Turner型光谱仪ICCD 常规聚焦透镜(焦距f=80mm) 50μm/(39μg/g~78μg/g) [29] Nd:YAG激光器(1064nm, 10ns) Czerny-Turner型光谱仪ICCD 石英透镜(焦距f=28mm) 90μm/(100μg/g) [30] Nd:YAG激光器(1064nm, 5ns, 10Hz) Maya 2000Pro型光谱仪CCD 15倍放大物镜 10μm/(2mg/g) [31]
基于激光诱导击穿光谱的元素成像技术研究进展
Research progress of elemental imaging based on laser-induced breakdown spectroscopy
-
摘要: 元素成像技术是一种基于激光诱导击穿光谱(LIBS)技术的元素光谱强度成像技术,该技术拥有多元素分析能力、原位成像能力和大面积样本扫描成像能力,且样本制备简易、成像速度快。首先介绍了LIBS元素分布成像技术的原理,其次介绍了目前常用的LIBS成像设备,最后回顾了LIBS成像技术在古气候学、病理分析、药物代谢及植物学分析等领域的相关应用。Abstract: Elemental imaging technology is an element spectral intensity imaging technology based on laser-induced breakdown spectroscopy (LIBS). The technology has the ability of multielement analysis, in situ imaging and large area sample scanning. The sample preparation is simple and the imaging speed is fast. Firstly, the principle of LIBS element distribution imaging technology is introduced. Secondly, the commonly-used LIBS imaging equipment is introduced. Finally, the applications of LIBS imaging technology in paleoclimatology, pathological analysis, drug metabolism and botanical analysis are reviewed.
-
表 1 常用的LIBS扫描成像仪器类型
激光器(波长,脉宽,频率) 光谱仪 光路聚焦系统 空间分辨率/检测限 参考文献 四倍频Nd:YAG激光器(266nm,10Hz) Czerny-Turner型光谱仪CCD 15倍放大物镜 10μm/(2μg/g~16μg/g) [25] Nd:YAG激光器(1064nm, 5ns, 100Hz) 双Czerny-Turner型光谱仪ICCD 15倍放大物镜 10μm/(5μg/g~7μg/g) [26] 二倍频钛蓝宝石飞秒激光器(400nm, 175fs, 1kHz) Echelle型光谱仪ICCD 两种不同焦距的透镜组合(焦距f1=9.0mm,焦距f2=15.0mm) 6μm/— [27] 四倍频Nd:YAG激光器(266nm,2Hz) Czerny-Turner型光谱仪CCD 40μm/— [28] 四倍频Nd:YAG激光器(266nm);Nd:YAG激光器(1064nm)(正交) Czerny-Turner型光谱仪ICCD 常规聚焦透镜(焦距f=80mm) 50μm/(39μg/g~78μg/g) [29] Nd:YAG激光器(1064nm, 10ns) Czerny-Turner型光谱仪ICCD 石英透镜(焦距f=28mm) 90μm/(100μg/g) [30] Nd:YAG激光器(1064nm, 5ns, 10Hz) Maya 2000Pro型光谱仪CCD 15倍放大物镜 10μm/(2mg/g) [31] -
[1] DEAN K M, QIN Y, PALMER A E. Visualizing metal ions in cells: An overview of analytical techniques, approaches, and probes[J]. BBA-Molecular Cell Research, 2012, 1823(9):1406-1415. [2] HARE D J, NEW E J, de IOBGE M D, et al. Imaging metals in biology: Balancing sensitivity, selectivity and spatial resolution[J]. Chemical Society Reviews, 2015, 44(17): 5941-5958. doi: 10.1039/C5CS00055F [3] SHI Y, LIN W, JI W, et al. The architecture of the HP-UHP Dabie massif: New insights from geothermobarometry of eclogites, and implication for the continental exhumation processes[J]. Journal of Asian Earth Sciences, 2014, 86(2):38-58. [4] SAJNOG A, HANC A, KOCZOROWSKI R, et al. New procedure of quantitative mapping of Ti and Al released from dental implant and Mg, Ca, Fe, Zn, Cu, Mn as physiological elements in oral mucosa by LA-ICP-MS[J]. Talanta, 2017, 175:370-381. doi: 10.1016/j.talanta.2017.07.058 [5] NAGATA T. X-ray microanalysis of biological specimens by high voltage electron microscopy[J]. Progress in Histochemistry & Cytochemistry, 2004, 39(4):185-319. [6] METZNER R, SCHNEIDER H U, BREUER U, et al. Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy[J]. Plant Physiology, 2008, 147(4):1774-1787. doi: 10.1104/pp.107.109215 [7] MESJASZ-PRZYBYLOWICZ J, PRZYBYLOWOCZ W J. Micro-PIXE in plant sciences: Present status and perspectives[J]. Nuclear Inst & Methods in Physics Research, 2002, B189(1/4):470-481. [8] FLINN J M, HUNTER D, LINKOUS D H, et al. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc[J]. Physiology & Behavior, 2005, 83(5):793-803. [9] CARIDI F. Laser-induced breakdown spectroscopy: Theory and applications[J]. Contemporary Physics, 2017, 58(3):273. [10] ZHANG D, MA X, ZHAO D, et al. Rapid detection of chromium in medicinal capsules by LIBS technology[J]. Chinese Journal of Pharmaceutical Analysis, 2013, 33(4):2070-2073. [11] LI C M, ZOU Z M, YANG X Y, et al. Quantitative analysis of phosphorus in steel using laser-induced breakdown spectroscopy in air atmosphere[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(8):1432-1437. doi: 10.1039/C4JA00036F [12] SUYANTU H, NI N R, WINARDI T B, et al. Qualitative analysis of Pb liquid sample using laser-induced breakdown spectroscopy (LIBS)[C]//AIP International Conference on Theoretical and Applied Physics (LCTAP 2012). New York, USA: American Institute of Physics Publishing, 2013: 14-16. [13] THERIAULT G A, BODENSTEINER S, LIEBERMAN S H. A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils[J]. Field Analytical Chemistry & Technology, 2015, 2(2):117-125. [14] FENSELAU C. Critical reviews in analytical chemistry[J]. Analy-tical Chemistry, 2014, 86(1):1. doi: 10.1021/ac404014r [15] NOLL R, FRICKEBEGEMANN C, CONNEMANN S, et al. LIBS analyses for industrial applications—an overview of developments from 2014 to 2018[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:945-956. doi: 10.1039/C8JA00076J [16] HU Z, GIERSE N, LI C, et al. Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS[J]. Physica Scripta, 2017, 170(T170):014046. [17] LI C, FENG C L, ODERJI H Y, et al. Review of LIBS application in nuclear fusion technology[J]. Frontiers of Physics, 2016, 11(6):114214. doi: 10.1007/s11467-016-0606-1 [18] BAREFIELD J E, JUDGE E J, CAMPBEL K R, et al. Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy (LIBS)[J]. Spectrochimica Acta, 2016, B120:1-8. [19] PANDHIJA S, RAI N K, RAI A K, et al. Contaminant concentration in environmental samples using LIBS and CF-LIBS[J]. A-pplied Physics, 2010, B98(1):231-241. [20] KUMAR A. Uses of LIBS technology in biological media[J]. Proceedings of the SPIE, 2006, 6377: 637701. doi: 10.1117/12.694345 [21] MUSTAPHA IMAM A, SAFWAN AZIZ M, CHAUDHARY K, et al. LIBS-PCA based discrimination of Malaysian coins[J]. Journal of Physics, 2018, 1027(1):012012. [22] HU H Q, XU X H, LIU M H, et al. Determination of Cu in shell of preserved egg by LIBS coupled with PLS[J]. Spectroscopy & Spectral Analysis, 2015, 35(12):3500-3504. [23] CAMPANELLA B, GRIFONIE, LEGNAIOLIS, et al. Classification of wrought aluminum alloys by ANN evaluation of LIBS spectra from aluminum scrap samples[J]. Spectrochimica Acta, 2017, B134: 52-57. [24] BELLO L T, DA A P, JR S D, et al. Mercury amalgam diffusion in human teeth probed using femtosecond LIBS[J]. Applied Spectro-scopy, 2017, 71(4):659-669. doi: 10.1177/0003702816687572 [25] SANCEY L, MOTTOROS V, BUSSERB, et al. Laser spectrometry for multi-elemental imaging of biological tissues[J]. Scientific Reports, 2014, 4:6065. [26] CACERES J O, PELASCINI F, MOTTOROS V, et al. Megapixel multi-elemental imaging by laser-induced breakdown spectroscopy, a technology with considerable potential for paleoclimate studies[J]. Scientific Reports, 2017, 7(1):5080. doi: 10.1038/s41598-017-05437-3 [27] AHAMER C M, RIEPL K M, HUBER N, et al. Femtosecond laser-induced breakdown spectroscopy: Elemental imaging of thin films with high spatial resolution[J]. Spectrochimica Acta, 2017, B136:56-65. [28] BONTA M, TOROK S, DOME B, et al. Tandem LA LIBS coupled to ICP-MS for comprehensive analysis of tumor samples[J]. Spectroscopy, 2017, 32(10):42-46. [29] KRAJCAROVA L, NOVOTNY K, KUMMEROVA M, et al. Mapping of the spatial distribution of silver nanoparticles in root tissues of vicia faba by laser-induced breakdown spectroscopy (LIBS)[J]. Talanta, 2017, 173:28-35. doi: 10.1016/j.talanta.2017.05.055 [30] HAUSMANN N, SIOZOS P, LEMONIS A, et al. Elemental mapping of Mg/Ca intensity ratios in marine mollusk shells using laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8):1467-1472. doi: 10.1039/C7JA00131B [31] TRICHARD F, MONCAYO S, DEVISMES D, et al. Evaluation of a compact VUV spectrometer for elemental imaging by laser-induced breakdown spectroscopy: Application to mine core characterization[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8):1527-1534. doi: 10.1039/C7JA00185A [32] MONCAYO S, TRICHARD F, BUSSER B, et al. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2017, B133:40-44. [33] BUSSER B, MONCAYO S, TRICHARD F, et al. Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy[J]. Mod Pathol, 2017, 31(3):1-7. [34] GIMENEZ Y, BUSSER B, TRICHARD F, et al. 3-D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy[J]. Scientific Reports, 2016, 6:29936. doi: 10.1038/srep29936 [35] ZHAO C J, DONG D M, DU X F, et al. In-field, in situ, and in vivo 3-dimensional elemental mapping for plant tissue and soil analysis using laser-induced breakdown spectroscopy[J]. Sensors, 2016, 16(10):1764. doi: 10.3390/s16101764 [36] SKARKOVA P, NOVOTNY K, LUBAL P, et al. 2-D distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2017, B131:107-114.