Numerical simulation of phase transition process of laser drilling on GH4037 nickel-based superalloy
-
摘要: 为了更准确地研究激光打孔相变过程,基于流体传热和流体力学理论,建立了GH4037镍基高温合金激光打孔相变模型。模型中考虑了重力、粘滞力、反冲压力的作用,以及材料的固-液相变和液-气相变过程,通过数值计算得到了激光打孔相变过程的温度场和速度场。结果表明,气化材料的反冲压力可以加快熔池的流动,在激光功率为2000W、脉宽为1.70ms时,材料最大气化蒸发速率可以达到250m/s。该模型为进一步开展激光打孔研究提供了理论基础。
-
关键词:
- 激光技术 /
- 激光打孔 /
- 数值模拟 /
- GH4037镍基高温合金
Abstract: In order to study the phase transformation process of laser drilling more accurately, based on the theories of fluid heat transfer and fluid mechanics, a phase transition model of laser drilling on GH4037 nickel-based superalloy was established. In the model, the effect of gravity, viscous force, recoil pressure, solid-liquid phase transition and liquid-gas phase transition process were considered, and the temperature field and velocity field of laser drilling phase transition process were obtained by numerical calculation. The results show that, the reaction pressure of the gasification material can accelerate the flow of the molten pool. When the laser power is 2000W and the pulse width is 1.70ms, the maximum evaporation rate of the material can reach 250m/s. This model provides a theoretical basis for further research on laser drilling. -
-
Table 1 Physical properties of air
T/K cp/(J·kg-1·K-1) κ/(W·m·-1K-1) μ /(Pa·s) 300 1.005×103 0.0262 1.983×10-5 500 1.029×103 0.0403 2.671×10-5 1000 1.141×103 0.0675 4.152×10-5 1500 1.230×103 0.0946 5.400×10-5 2000 1.338×103 0.1240 6.500×10-5 2500 1.688×103 0.1750 7.670×10-5 Table 2 Physical properties of GH4037 Nickel-based superalloy
propertiy value specific heat of solid phase cp, s 440J/(kg·K) thermal conductivity of solid phase κs 13.8W/(m·K) thermal conductivity of melting phase κm 23.9W/(m·K) dynamic viscosity μ 0.006Pa·s latent heat of melting Hm 296kJ/kg latent heat of vaporization Hv 6423kJ/kg melting temperature Tm 1585K vaporization temperature Tv 3005K -
[1] WANG Zh P, LIU Y, WANG Y. Experiment study on laser cutting and process simulation[J]. Manufacturing Technology & Machine Tool, 2016(6):118-122(in Chinese).
[2] FU B Y, OUYANG B Sh, LIU W D, et al. Study on fiber laser rotary drilling process of 0.12mm SUS304[J]. Optical and Technique, 2016, 42(2):126-129(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjs201602007
[3] QIAN X Zh, WANG Q Q, REN N F. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. Laser Technology, 2017, 41(4):578-581(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201704024
[4] HAN F M, XU Sh Zh, SONG W L, et al. Study of nanosecond laser ablation on aluminum and stainless steel targets[J].Chinese Journal of Lasers, 2016, 43(2):203005(in Chinese). DOI: 10.3788/CJL
[5] HANON M M, AKMAN E, OZTOPRAK B G, et al. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser[J]. Optics & Laser Technology, 2012, 44(4):913-922. http://www.sciencedirect.com/science/article/pii/S0030399211003446
[6] NATH A K, HANSDAH D, ROY S, et al. A study on laser drilling of thin steel sheet in air and underwater[J]. Journal of Applied Physics, 2010, 107(12):123103. DOI: 10.1063/1.3447866
[7] LOW D K Y, LI L, BYRD P J. The effects of process parameters on spatter deposition in laser percussion drilling[J]. Optics & Laser Technology, 2000, 32(5):347-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5190fa0016263b302e17a48f8fa6e4cc
[8] LOU D Y, XIONG H, WU Y G, et al. Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths[J]. Laser Technology, 2017, 41(3):427-432(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703024
[9] XU B Zh, QI L J, WANG W, ZHU X, et al. Study on the optimum matching parameters of the combined laser drilling[J]. Laser Technology, 2018, 42(1):5-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801002
[10] SWIFT-HOOK D T, GICK A E F. Penetration welding with laser[J]. Welding Journal, 1973, 52:492-499. DOI: 10.1063-1.334571/
[11] WU Y M, LI J Ch. Simulation of laser drilling based on semi-analytic solution[J]. Laser Technology, 2009, 33(2):205-208(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200902024
[12] XU B Q, WANG H, XU G D, et al. Numerical modeling of laser-induced molten pool for laser interaction with metal material[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(3):358-362(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslgdxxb201003024
[13] ZHANG L, QIN Y, LU J, et al. Analysis of energy efficiency ratio for long-pulse laser drilling based on the heat conduction equation[J]. Journal of Optoelectronics·Laser, 2015, 26(10):1990-1996(in Chinese).
[14] CHU Q C, YU G, LU G Q, et al. Two-dimensional numerical investigation for the effects of laser process parameters on hole type during laser drilling[J]. Chinese Journal of Lasers, 2011, 38(6):0603001(in Chinese). DOI: 10.3788/CJL
[15] BEGIC-HAJDAREVIC D, BIJELONJA I. Experimental and numerical investigation of temperature distribution and hole geometry during laser drilling process[J]. Procedia Engineering, 2015, 100:384-393. DOI: 10.1016/j.proeng.2015.01.382
[16] SONG L L, SHI G Q, LI Zh G. Simulation on laser drilling temperature field by using ANSYS[J]. Journal of Changchun University of Science and Technology, 2006, 29(4):19-21(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CGJM200604005.htm
[17] SOWDARI D, MAJUMDAR P. Finite element analysis of laser irradiated metal heating and melting processes[J]. Optics & Laser Technology, 2010, 42(6):855-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e42595431b3082f04bedfc162ab3a22a
[18] JIE Q, ZHANG G H, CHEN Y W. Real fluid dynamics[M]. Beijing:Tsinghua University Press, 1986:383-385(in Chinese).
[19] THE COUNCIL OF EDITORS OF CHINA AERONAUTICAL MATERIALS HANDBOOK. China aeronautical materials handbook[M]. Beijing:Standards Press of China, 2002:260-261(in Chinese).
[20] ZHANG Y, SHEN Z, NI X. Modeling and simulation on long pulse laser drilling processing[J]. International Journal of Heat & Mass Transfer, 2014, 73(4):429-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcea0d2ef8345b96fa4352481cbbbd6d
-
期刊类型引用(3)
1. 张亚男,牛春晖,赵爽,吕勇. 近红外激光对图像传感探测器的干扰研究. 激光技术. 2020(04): 418-423 . 本站查看
2. 刘贺雄,周冰,贺宣,高宇辰,范磊. APD对湍流大气中激光的双重随机探测过程. 激光技术. 2019(04): 35-39 . 本站查看
3. 刘贺雄,周冰,高宇辰. APD探测系统的噪声特性及其影响因素研究. 激光技术. 2018(06): 862-867 . 本站查看
其他类型引用(2)