高级检索

GH4037镍基高温合金激光打孔相变过程数值模拟

王琪琪, 任乃飞, 任旭东

王琪琪, 任乃飞, 任旭东. GH4037镍基高温合金激光打孔相变过程数值模拟[J]. 激光技术, 2018, 42(6): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.007
引用本文: 王琪琪, 任乃飞, 任旭东. GH4037镍基高温合金激光打孔相变过程数值模拟[J]. 激光技术, 2018, 42(6): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.007
WANG Qiqi, REN Naifei, REN Xudong. Numerical simulation of phase transition process of laser drilling on GH4037 nickel-based superalloy[J]. LASER TECHNOLOGY, 2018, 42(6): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.007
Citation: WANG Qiqi, REN Naifei, REN Xudong. Numerical simulation of phase transition process of laser drilling on GH4037 nickel-based superalloy[J]. LASER TECHNOLOGY, 2018, 42(6): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.007

GH4037镍基高温合金激光打孔相变过程数值模拟

基金项目: 

江苏省高校自然科学研究资助项目 11KJA460003

江苏省高校"青蓝工程"资助项目 苏教师〔2016〕15号

国家重点研发计划资助项目 2011CB013004

江苏省"六大人才高峰"资助项目 2013-ZBZZ-025

江苏省科技支撑计划资助项目 BE2015037

江苏省高校自然科学研究资助项目 15KJD460002

详细信息
    作者简介:

    王琪琪(1992-), 男, 硕士研究生, 主要从事激光先进加工技术的研究

    通讯作者:

    任乃飞, E-mail:rnf@ujs.edu.cn

  • 中图分类号: TG665

Numerical simulation of phase transition process of laser drilling on GH4037 nickel-based superalloy

  • 摘要: 为了更准确地研究激光打孔相变过程,基于流体传热和流体力学理论,建立了GH4037镍基高温合金激光打孔相变模型。模型中考虑了重力、粘滞力、反冲压力的作用,以及材料的固-液相变和液-气相变过程,通过数值计算得到了激光打孔相变过程的温度场和速度场。结果表明,气化材料的反冲压力可以加快熔池的流动,在激光功率为2000W、脉宽为1.70ms时,材料最大气化蒸发速率可以达到250m/s。该模型为进一步开展激光打孔研究提供了理论基础。
    Abstract: In order to study the phase transformation process of laser drilling more accurately, based on the theories of fluid heat transfer and fluid mechanics, a phase transition model of laser drilling on GH4037 nickel-based superalloy was established. In the model, the effect of gravity, viscous force, recoil pressure, solid-liquid phase transition and liquid-gas phase transition process were considered, and the temperature field and velocity field of laser drilling phase transition process were obtained by numerical calculation. The results show that, the reaction pressure of the gasification material can accelerate the flow of the molten pool. When the laser power is 2000W and the pulse width is 1.70ms, the maximum evaporation rate of the material can reach 250m/s. This model provides a theoretical basis for further research on laser drilling.
  • Figure  1.   Schematic diagram of mesh division

    Figure  2.   Density of GH4037 Nickel-based superalloy after smoothing

    Figure  3.   Simulation results of temperature field

    Figure  4.   Horizontal flow velocity of molten pool

    Figure  5.   Vertical flow velocity at the surface of molten pool

    Figure  6.   Pressure at the surface of molten pool

    Figure  7.   Simulation results of vertical field

    Table  1   Physical properties of air

    T/K cp/(J·kg-1·K-1) κ/(W·m·-1K-1) μ /(Pa·s)
    300 1.005×103 0.0262 1.983×10-5
    500 1.029×103 0.0403 2.671×10-5
    1000 1.141×103 0.0675 4.152×10-5
    1500 1.230×103 0.0946 5.400×10-5
    2000 1.338×103 0.1240 6.500×10-5
    2500 1.688×103 0.1750 7.670×10-5
    下载: 导出CSV

    Table  2   Physical properties of GH4037 Nickel-based superalloy

    propertiy value
    specific heat of solid phase cp, s 440J/(kg·K)
    thermal conductivity of solid phase κs 13.8W/(m·K)
    thermal conductivity of melting phase κm 23.9W/(m·K)
    dynamic viscosity μ 0.006Pa·s
    latent heat of melting Hm 296kJ/kg
    latent heat of vaporization Hv 6423kJ/kg
    melting temperature Tm 1585K
    vaporization temperature Tv 3005K
    下载: 导出CSV
  • [1]

    WANG Zh P, LIU Y, WANG Y. Experiment study on laser cutting and process simulation[J]. Manufacturing Technology & Machine Tool, 2016(6):118-122(in Chinese).

    [2]

    FU B Y, OUYANG B Sh, LIU W D, et al. Study on fiber laser rotary drilling process of 0.12mm SUS304[J]. Optical and Technique, 2016, 42(2):126-129(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjs201602007

    [3]

    QIAN X Zh, WANG Q Q, REN N F. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. Laser Technology, 2017, 41(4):578-581(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201704024

    [4]

    HAN F M, XU Sh Zh, SONG W L, et al. Study of nanosecond laser ablation on aluminum and stainless steel targets[J].Chinese Journal of Lasers, 2016, 43(2):203005(in Chinese). DOI: 10.3788/CJL

    [5]

    HANON M M, AKMAN E, OZTOPRAK B G, et al. Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser[J]. Optics & Laser Technology, 2012, 44(4):913-922. http://www.sciencedirect.com/science/article/pii/S0030399211003446

    [6]

    NATH A K, HANSDAH D, ROY S, et al. A study on laser drilling of thin steel sheet in air and underwater[J]. Journal of Applied Physics, 2010, 107(12):123103. DOI: 10.1063/1.3447866

    [7]

    LOW D K Y, LI L, BYRD P J. The effects of process parameters on spatter deposition in laser percussion drilling[J]. Optics & Laser Technology, 2000, 32(5):347-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5190fa0016263b302e17a48f8fa6e4cc

    [8]

    LOU D Y, XIONG H, WU Y G, et al. Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths[J]. Laser Technology, 2017, 41(3):427-432(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703024

    [9]

    XU B Zh, QI L J, WANG W, ZHU X, et al. Study on the optimum matching parameters of the combined laser drilling[J]. Laser Technology, 2018, 42(1):5-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801002

    [10]

    SWIFT-HOOK D T, GICK A E F. Penetration welding with laser[J]. Welding Journal, 1973, 52:492-499. DOI: 10.1063-1.334571/

    [11]

    WU Y M, LI J Ch. Simulation of laser drilling based on semi-analytic solution[J]. Laser Technology, 2009, 33(2):205-208(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200902024

    [12]

    XU B Q, WANG H, XU G D, et al. Numerical modeling of laser-induced molten pool for laser interaction with metal material[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(3):358-362(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslgdxxb201003024

    [13]

    ZHANG L, QIN Y, LU J, et al. Analysis of energy efficiency ratio for long-pulse laser drilling based on the heat conduction equation[J]. Journal of Optoelectronics·Laser, 2015, 26(10):1990-1996(in Chinese).

    [14]

    CHU Q C, YU G, LU G Q, et al. Two-dimensional numerical investigation for the effects of laser process parameters on hole type during laser drilling[J]. Chinese Journal of Lasers, 2011, 38(6):0603001(in Chinese). DOI: 10.3788/CJL

    [15]

    BEGIC-HAJDAREVIC D, BIJELONJA I. Experimental and numerical investigation of temperature distribution and hole geometry during laser drilling process[J]. Procedia Engineering, 2015, 100:384-393. DOI: 10.1016/j.proeng.2015.01.382

    [16]

    SONG L L, SHI G Q, LI Zh G. Simulation on laser drilling temperature field by using ANSYS[J]. Journal of Changchun University of Science and Technology, 2006, 29(4):19-21(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CGJM200604005.htm

    [17]

    SOWDARI D, MAJUMDAR P. Finite element analysis of laser irradiated metal heating and melting processes[J]. Optics & Laser Technology, 2010, 42(6):855-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e42595431b3082f04bedfc162ab3a22a

    [18]

    JIE Q, ZHANG G H, CHEN Y W. Real fluid dynamics[M]. Beijing:Tsinghua University Press, 1986:383-385(in Chinese).

    [19]

    THE COUNCIL OF EDITORS OF CHINA AERONAUTICAL MATERIALS HANDBOOK. China aeronautical materials handbook[M]. Beijing:Standards Press of China, 2002:260-261(in Chinese).

    [20]

    ZHANG Y, SHEN Z, NI X. Modeling and simulation on long pulse laser drilling processing[J]. International Journal of Heat & Mass Transfer, 2014, 73(4):429-437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcea0d2ef8345b96fa4352481cbbbd6d

  • 期刊类型引用(3)

    1. 张亚男,牛春晖,赵爽,吕勇. 近红外激光对图像传感探测器的干扰研究. 激光技术. 2020(04): 418-423 . 本站查看
    2. 刘贺雄,周冰,贺宣,高宇辰,范磊. APD对湍流大气中激光的双重随机探测过程. 激光技术. 2019(04): 35-39 . 本站查看
    3. 刘贺雄,周冰,高宇辰. APD探测系统的噪声特性及其影响因素研究. 激光技术. 2018(06): 862-867 . 本站查看

    其他类型引用(2)

图(7)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2018-01-07
  • 修回日期:  2018-02-05
  • 发布日期:  2018-11-24

目录

    /

    返回文章
    返回