Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser
-
摘要: 为了研究激光法制备纳米金刚石的相变机理,采用纳秒脉冲激光冲击微米级石墨悬浮液,并做强酸高温氧化提纯处理,结合X射线衍射、喇曼光谱、高分辨率透射电镜等表征手段以及热力学和动力学分析方法,对实验结果进行了理论分析和实验验证。合成得到分散均匀、尺寸在4nm~12nm的超细纳米金刚石。结果表明,纳秒激光辐照下,石墨是通过固态-气态-液态-固态的形式转变为金刚石结构的;与毫秒脉冲激光相比,高功率密度、短脉宽的纳秒激光为金刚石核的生长提供了大的过冷度,提高了金刚石的形核率和生长速率;但是纳米金刚石的生长温度范围极小,冷却过程中石墨结构与金刚石结构同时形核、长大,引起金刚石颗粒表面的石墨化,限制了纳米金刚石的生长。Abstract: In order to study the growth mechanism from graphite to nano-diamond by laser processing, micron graphite suspension was irradiated by nanosecond pulse laser and then was purified by acid high-temperature oxidation. X-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used in theoretical analysis and experimental verification. The formation mechanism of nano-diamond was analyzed from thermodynamics and kinetics aspects respectively. Ultra-fine nano-diamond with particle size of 4nm~12nm and uniformly dispersion was synthesized. The results show that under the irradiation of nanosecond pulse laser, the transition from graphite to diamond is solid-vapor-liquid-solid phase transformation process. Compared with millisecond pulse laser, nanosecond laser with high intensity and short pulse width can supply larger super-cooling degree for diamond core growth and improve nucleation rate and growth velocity of nano-diamond. However, growth temperature range of nano-diamond is extremely small. Inevitable graphitization on the surface of diamond particles limits the further growth of nano-diamond.
-
Keywords:
- laser technique /
- nano-diamond /
- growth kinetics /
- phase transition
-
-
[1] SUN J, ZHAI Q, JIANG L, et al. Synthesis of diamond nanocrystals by pulsed-laser irradiation[J]. Diamond Abrasives Engineering, 2006(5):24-27(in Chinese).
[2] LEI Y W, SUN J, DU X W, et al. Mechanism of phase transformation of diamond synthesized by laser with low power density[J]. Chinese Journal of Lasers, 2007,34(2):295-299(in Chinese).
[3] SUN J, LI J Q, DU X W, et al. Analysis on the particle size of nanodiamond[J]. Experimental Technology and Management, 2007,24(4):28-29(in Chinese).
[4] TIAN F, SUN J. Thermodynamics analysis on the formation of nanodiamonds with different sizes induced by differential pulsed laser[J].Chinese Journal of Lasers, 2009,36(11):3039-3044(in Chinese).
[5] WANG J B, ZHANG C Y, ZHONG X L, et al. Cubic hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction[J]. Chemical Physical Letters, 2002, 36(1/2):86-90.
[6] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nnaocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond Related Material, 2004, 13(4/8):661-665.
[7] YANG G W. Laser ablation in liquids:applications in the synthesis of nanocrystals[J]. Progress in Material Science, 2007, 52(4):648-698.
[8] REN X D, ZHENG L M, TANG S X, et al. Device and method for the synthesis of nano-diamond by high-energy lamp-pumped solid laser:China, 201310472643.1[P].2013-10-12(in Chinese).
[9] YANG H M, REN X D, ZHENG L M, et al. Deposition of nano-diamond film by double beam pulse laser irradiation of graphite suspendion[J]. Chinese Journal of Lasers, 2014,41(5):0507001(in Chinese).
[10] PRAWER S, NUGENT K W, JAMIESON D N, et al. The Raman spectrum of nanocrystalline diamond[J]. Chemical Physics Letters, 2000, 332(1/2):93-97.
[11] PARK J B, XIONG W, GAO Y, et al. Fast growth of grapheme patterns by laser direct writing[J]. Applied Physics Letters, 2011, 98(12):123109.
[12] HUANG K J, XIE Ch Sh, XU D Sh. Development of nanoparticles synthesis by laser evaporation condensation[J]. Laser Technology, 2004, 28(1):5-11(in Chinese).
[13] TANG J, ZUO D L, YANG C G, et al. Spectroscopic diagnosis of air plasma induced by pulsed CO2 laser[J]. Laser Technology, 2013, 37(5):636-641(in Chinese).
[14] SAVVATIMSKIY A I. Measurements of the melting point of graphite and the properties of liquid carbon(a review for 1963-2003)[J].Carbon,2005,43(6):1115-1142.
[15] VENKATESAN T, JACOBSON D C, GIBSON J M, et al. Measurement of thermodynamic parameters of graphite by pulsed-laser melting and ion channeling[J]. Physics Review Letters, 1984, 53(4):360-363.
[16] HUA Y Q, XIAO T, XUE Q, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology, 2013, 37(5):565-570(in Chinese).
[17] WANG C X, YANG G W. Thermodynamics of metastable phase nucleation at the nanoscale[J]. Material Science Engineering, 2005, R49(6):157-202.
-
期刊类型引用(6)
1. 顾怀章,罗安智,王雷,李远勋,董玮. 相变原理在纳米材料组织结构和制备研究中的应用. 广州化工. 2023(01): 17-19 . 百度学术
2. 马服辉,石佑敏,姜伯晨,王正义,梅璐,朱玉广. 石墨转化纳米金刚石相变分子动力学模拟研究. 激光技术. 2023(06): 860-865 . 本站查看
3. 黄海芳,黄凯,谷继腾,方克明. 人造金刚石的微观结构模型. 人工晶体学报. 2020(07): 1180-1186 . 百度学术
4. 王冕,马服辉,王日红,钱磊,马文迅,任旭东. 液相脉冲激光辅助制备单壁碳纳米角的研究. 激光技术. 2019(02): 179-183 . 本站查看
5. 申健,李乔敏,王宝成,张毅. 两种基底对中药溶液喇曼光谱增强作用的比较. 激光技术. 2019(03): 427-431 . 本站查看
6. 姚凯丽,代兵,乔鹏飞,谭小俊,舒国阳,杨磊,刘康,韩杰才,朱嘉琦. 纳米金刚石材料的研究进展. 人工晶体学报. 2019(11): 1977-1989 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 7
- 被引次数: 6