Study on graphite to nano-diamond phase transition simulated by molecular dynamics method
-
摘要: 为了探讨1维微尺度热传导模型不同激光能量对石墨转化纳米金刚石相变机理的影响, 采用基于密度泛函理论的分子动力学方法模拟优化后的石墨结构, 用有限差分法计算了激光辐照石墨表面的温度分布; 基于sp3杂化键可以明显地区分金刚石和石墨结构, 根据能量耦合得到不同激光能量条件下辐照石墨的态密度带隙, 研究了碳原子键合条件。结果表明, 只有当激光能量达到5 J时, 才能形成少量sp3杂化碳原子; 随着激光能量的增加, 液相下受辐照的石墨表面的温度随之增加, 碳原子中的自由电子更容易移动到成键分子轨道, 电子的电负性增强, 从而增强sp3键的极性, 并有助于将sp2键转变为sp3键。该研究结果对在液相激光辐照下提升纳米金刚石制备效率、探究纳米金刚石制备机理有重要的现实意义。Abstract: In order to discuss the influence of different laser energy on the transformation mechanism of graphite into nano-diamond in a 1-D microscale heat conduction model, optimized graphite structure was simulated by molecular dynamics method based on density functional theory(DFT). The temperature distribution of graphite surface irradiated by laser was calculated by the finite difference method. Based on the sp3 bond that can make a distinction between diamond and graphite was discussed especially, the carbon atom bonding condition was studied according to the band gap of the density of states(DOS) obtained by energy coupling. The results show that a small number of sp3 hybrid carbon atoms can be formed only when the laser energy reaches 5 J, and with the increase of laser energy, the temperature of the irradiated graphite surface in the liquid phase increases, the free electrons in the carbon atoms can be easier to move to a bonding molecular orbital, and the electronegativity of the electrons will be enhanced, which boosts the sp3 bond polarity and helps to transform sp2 bond into sp3 bond. This study has important practical significance in improving the preparation efficiency of nano-diamond under laser irradiation in the liquid phase and exploring the preparation mechanism of nano-diamond.
-
-
表 1 模拟中使用的不同激光参数
Table 1 Different laser parameters used in the simulation
number wavelength/
nmpulse
energy/Jpulse
width/nspower density/
(W·cm-2)1 1064 2 10 2.83×109 2 1064 3.5 10 4.95×109 3 1064 5 10 7.07×109 4 1064 6.5 10 9.20×109 5 1064 8 10 1.13×1010 -
[1] 季国顺, 张永康. 激光抛光化学气相沉积金刚石膜[J]. 激光技术, 2003, 27(2): 106-109. http://www.jgjs.net.cn/article/id/13864 JI G Sh, ZHANG Y K. Laser polished CVD diamond films[J]. Laser Technology, 2003, 27(2): 106-109(in Chinese). http://www.jgjs.net.cn/article/id/13864
[2] WILLIAMS O A, NESLADEK M, DAENEN M, et al. Growth, electronic properties and applications of nanodiamond[J]. Diamond and Related Materials, 2008, 17(7/10): 1080-1088.
[3] ABBASCHIAN R, ZHU H, CLARKE C. High pressure-high temperature growth of diamond crystals using split sphere apparatus[J]. Diamond and Related Materials, 2005, 14(11/12): 1916-1919.
[4] 郑腊梅, 吕豫文, 唐少雄, 等. 激光法制备超细纳米金刚石的相变机理[J]. 激光技术, 2016, 40(1): 25-28. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.006 ZHENG L M, LÜ Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by renosecond laser[J]. Laser Technology, 2016, 40(1): 25-28(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2016.01.006
[5] HEMAWAN K W, GOU H Y, HEMLEY R J. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition[J]. Applied Physics Letters, 2015, 107(18): 181901. DOI: 10.1063/1.4934751
[6] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond and Related Materials, 2004, 13(4/8): 661-665.
[7] AMANS D, CHENUS A C, LEDOUX G, et al. Nanodiamond synthesis by pulsed laser ablation in liquids[J]. Diamond & Related Materials, 2009, 18(2/3): 177-180.
[8] McKINDRA T, O'KEEFE M J, XIE Zh Q, et al. Characterization of diamond thin films deposited by a CO2 laser-assisted combustion-flame method[J]. Materials Characterization, 2010, 61(6): 661-667. DOI: 10.1016/j.matchar.2010.03.011
[9] REN X D, YANG H M, ZHENG L M, et al. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure[J]. Applied Physics Letters, 2014, 105(2): 021908. DOI: 10.1063/1.4890527
[10] ZIPOLI F, BERNASCONI M, MARTOŇÁK R. Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited[J]. European Physical Journal, 2004, B39(1): 41-47.
[11] 王金斌, 杨国伟. 脉冲激光诱导液-固界面反应合成金刚石纳米晶中的结构相变模型[J]. 高压物理学报, 1999, 13(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL902.011.htm WANG J B, YANG G W. Model of stracture transformation in synthesizing nano-crystalline diamond with pulsed-laser induced liquid-solid interface reaction[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 147-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL902.011.htm
[12] THORSLUND T, KAHLEN F J, KAR A. Temperatures, pressures and stresses during laser shock processing[J]. Optics and Lasers in Engineering, 2003, 39(1): 51-71. DOI: 10.1016/S0143-8166(02)00040-4
[13] 周素素, 王新兵, 尹培琪, 等. 脉冲激光诱导石墨等离子体羽辉特性研究[J]. 激光技术, 2018, 42(6): 796-800(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2018.06.013 ZHOU S S, WANG X B, YIN P Q, et al. Study on characteristics of graphite plume induced by pulsed laser[J]. Laser Technology, 2018, 42(6): 796-800. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.013
[14] CATTANEO C. A form of heat-conduction equations which eliminates the paradox of instantaneous propagation[J]. Comptes Rendus, 1958, 247(4): 431-433.
[15] VERNOTTE P. Some possible complications in the phenomena of thermal conduction[J]. Compte Rendus, 1961, 252(1): 2190-2191.
[16] JOSEPH D D, PREZIOSI L. Addendum to the paper "Heat waves"[J]. Review of Modern Physics, 1990, 62(2): 375-394.
[17] DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37(3): 269-277.
[18] 唐彦琴, 顾国华, 钱惟贤, 等. 四象限探测器基于高斯分布的激光光斑中心定位算法[J]. 红外与激光工程, 2017, 46(2): 0206003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201702010.htm TANG Y Q, GU G H, QIAN W X, et al. Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution[J]. Infrared and Laser Engineering, 2017, 46(2): 0206003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201702010.htm
[19] ALLOUIS C, ROSANO F, BERETTA F, et al. A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence[J]. Measurement Science and Technology, 2002, 13(3): 401-410.
[20] TOMLINSON E L, HOWELL D, JONES A P, et al. Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa)[J]. Diamond and Related Materials, 2011, 20(1): 11-17.
[21] LI X W, KE P, LEE K R, et al. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films[J]. Thin Solid Films, 2014, 552: 136-140.
[22] LI X W, KE P, ZHENG H, et al. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study[J]. Applied Surface Science, 2013, 273: 670-675.
[23] REN X D, MA F H, WANG R H, et al. Morphology-selective preparation and formation mechanism of few-layer graphene on Cu substrate by liquid-phase pulsed laser ablation[J]. AIP Advances, 2019, 9(12): 125004.
[24] NYABADZA A, VAZQUEZ M, FITZPATRICK B, et al. Effect of liquid medium and laser processing parameters on the fabrication of carbon nanoparticles via pulsed laser ablation in liquid towards paper electronics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128151.
[25] MARKS N A, McKENZIE D R, PAILTHORPE B A, et al. Microscopic structure of tetrahedral amorphous carbon[J]. Physical Review Letters, 1996, 76(5): 768.
[26] SUN J G, WU S J, YANG S Z, et al. Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals[J]. Applied Catalysis B: Environmental, 2018, 221: 467-472.
-
期刊类型引用(5)
1. 杨宇,杨发展,姜芙林,黄珂,刘朝伟. 激光加工微织构研究进展及其在改善摩擦学特性方面的功能分析. 工具技术. 2023(07): 3-12 . 百度学术
2. 邹云,桑振宽,李大磊,李阳. 304不锈钢水射流强化工艺的多目标优化设计. 表面技术. 2018(02): 25-29 . 百度学术
3. 张冲,王冠,杨志刚,刘赞丰. 脉冲光纤激光切割连杆裂解槽工艺参量优化. 激光技术. 2018(03): 422-426 . 本站查看
4. 符永宏,邹国文,黄婷,康正阳,李海波,郑峰. Cr12mov模具钢表面激光毛化工艺及力学性能研究. 应用激光. 2018(01): 76-80 . 百度学术
5. 凌步军,刘新金,倪振兴,潘文金,贾明明. 激光毛化表面微形貌成形工艺实验研究. 现代制造技术与装备. 2017(11): 30-33 . 百度学术
其他类型引用(4)