高级检索

色散管理孤子系统的调制不稳定性

卢洵, 王东升

卢洵, 王东升. 色散管理孤子系统的调制不稳定性[J]. 激光技术, 2012, 36(4): 557-561. DOI: 10.3969/j.issn.1001-806.2012.04.031
引用本文: 卢洵, 王东升. 色散管理孤子系统的调制不稳定性[J]. 激光技术, 2012, 36(4): 557-561. DOI: 10.3969/j.issn.1001-806.2012.04.031
LU Xun, WANG Dong-sheng. Modulation instability in dispersion managed soliton systems[J]. LASER TECHNOLOGY, 2012, 36(4): 557-561. DOI: 10.3969/j.issn.1001-806.2012.04.031
Citation: LU Xun, WANG Dong-sheng. Modulation instability in dispersion managed soliton systems[J]. LASER TECHNOLOGY, 2012, 36(4): 557-561. DOI: 10.3969/j.issn.1001-806.2012.04.031

色散管理孤子系统的调制不稳定性

详细信息
    作者简介:

    卢洵(1966- ),男,副教授,主要研究光信息处理、光通信技术、数字图像处理等.E-mail:ludapost@tom.com

  • 中图分类号: TN929.1;O437

Modulation instability in dispersion managed soliton systems

  • 摘要: 为了探究色散管理孤子系统抗微小扰动的能力,从色散管理孤子的调制不稳定性出发,利用孤子传输满足的非线性薛定谔方程,采用线性稳定性分析和数值模拟,得到色散管理系统中调制不稳定性的增益谱;得出色散管理孤子各阶调制不稳定性的增益曲线,并分析了基阶调制不稳定性起主导作用的条件,讨论了色散图中路径平均色散值。结果表明,色散深度对基阶调制不稳定性增益谱有影响,在平均色散为负值的情况下,平均色散值βav(βav0)越大,色散波动幅度越小,基阶调制不稳定性的增益越小,更有利于抑制调制不稳定性增益;但将平均色散值降至更小时,调制不稳定性增益谱不再连续。
    Abstract: In order to explore the ability for a dispersion managed soliton(DMS) system to resist smaller fluctuation,firstly,starting from the analysis of its modulation instability(MI),on the base of nonlinear soliton transfer equation,the expression for the gain spectrum of MI in DMS was deduced.Secondly,the gain curve of each order MI was presented,and then conditions of the fundamental MI playing a leading role were analyzed.Finally,the influence of average dispersion and dispersion depth on MI was discussed.The results show that in negative average dispersion region as the average dispersion becomes larger and dispersion fluctuates smaller,and influence of fundamental MI becomes smaller,so it is more favorable to suppress MI.However,MI gain spectrum appears side-lobe phenomenon,when the average dispersion becomes very small.
  • [1]

    ZHONG X Q,CHEN J G,LID Y.Modulation instability in the decreasing dispersion fibers with quintic nonlinearity[J].Laser Technology,2006,30(1):27-30 (in Chinese).

    [1]

    CENTURIN M,PORTER A,PU Y.Modulational instability in nonlinearity managed optical media[J].Physical Review,2007,A75(2):63-80.

    [2]

    AGRAWAL G P.Nonlinear fiber optical[M].New York,USA:The Institute of Electrical and Electronics Engineering,Elsevier Pte Ltd,2002:56-59.

    [3]

    ROTHENBERG J E.Modlulational instability for normal dispersion[J].Physical Review,1990,A42(1):682-685.

    [4]

    TIOFACK C G L,MOHAMADOU A,KOFANE T C.Modulational instability in optical fiber with stochastic parameters and noninstantaneous response[J].Optics Conmmmniations,2010,283 (6):1096-1101.

    [5]

    KROLIKOWSKI W,BANG O,NIKOLOV N I,et al.Modulational instability,solitons and beam propagation in spatially nonlocal nonlinear media[J].Journal of Optics,2004,B97 (6):S288-S294.

    [6]

    YANG H M,PAN W,LUO B,et al.Study on modulational instability in dispersion-managed soliton systems[J].Study on Optical Communications,2007,40(6):23-26(in Chinese).

    [7]

    SMITH N J,DORAN N J.ModuLational instabilities in fibers with periodic dispersion management[J].Optics Letters,1996,21 (8):570-572.

    [8]

    KAEWPLUNG P,ANGKAEW T.Sideband instability in the presence of periodic power variation and periodic dispersion management[C]//Optical Fiber Communication Conference and Exhibit,2001.Anaheim,USA:OFC,2001:WDD32.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-07
  • 修回日期:  2011-12-26
  • 发布日期:  2012-07-24

目录

    /

    返回文章
    返回