Citation: | Yang Chu-ping. The optical transfer function of a fluorescent confocal microscope with extended Gaussian source[J]. LASER TECHNOLOGY, 2005, 29(5): 552-554. |
[1] |
唐志列,梁瑞生,朱小松 et al.偏振共焦扫描激光显微镜的成像特性研究[J].光学学报,1999,19(8):1118~1122.
|
[2] |
HELL S W,BOOTH M,WILMS S.Two-photon near-and far-field fluorescence microscopy with continuous-wave excitation[J].Opt Lett,1998,23(15):1238~1240.
|
[3] |
CUMPSTEM B H,ANANTHAVEL S P,BARLOW S et al.Two-photon polymerization initiators for three-dimensional optical data storage andmicrofabrication[J].Nature,1999,398(4):51~54.
|
[4] |
SUN H B,MATSUO S,MISAWA H.Three-dimensional photonic crystal strutures achieved with two-photon-absorption photopolymerization of resin[J].A P L,1999,74(6):786~788.
|
[5] |
裴红津,唐志列,杨初平 et al.荧光波长对共焦显微镜成像特性的影响[J].光学学报,2002,22(10):1219~1223.
|
[6] |
唐志列,黄佐华,梁瑞生 et al.共焦显微镜的纵向分辨率及其判据[J].量子电子学报,2000,17(3):199~204.
|
[7] |
张平,吴震,王翠英 et al.荧光共焦扫描系统成像特性的优化[J].光学学报,1997,17(3):308~313.
|
[8] |
唐志列,杨初平,裴红津 et al.双光子共焦显微镜的三维成像理论与分辨率改善[J].中国科学,2002,A32(6):538~547.
|
[9] |
李爱民,陶纯堪,刘明 et al.共焦扫描激光显微镜的研制[J].激光技术,1994,18(5):261~263.
|
[10] |
张平,向际鹰,吴震.共焦扫描激光显微镜的电子控制系统研究[J].激光技术,1997,21(5):284~287.
|
[11] |
唐志列,梁瑞生,常鸿森.双光子和多光子共焦显微镜的成像理论[J].物理学报,2000,49(6):1076~1080.
|
[12] |
GU M.Principles of three-dimensional imaging in confocal microscopies[M].Singapare:World Scientific,1996.1~10.
|
[13] |
DRAZIC V.Three-dimensional transfer function analysis of a confocal fluorescence microscope with a finite-sized source and detector[J].J Mod Opt,1993,40(5):879~887.
|
[14] |
DRAZIC V.Three-dimensional transfer function of coherent confocal microscopes with extended source and detector[J].J Mod Opt,1992,39(8):1777~1790.
|
[15] |
黄菁,梁瑞生,司徒达 et al.高斯光束共焦扫描激光显微镜的光学传递函数[J].物理学报,1998,47(8):1289~1294.
|
[1] | WANG Junwu, WANG Xinbing, ZUO Duluo. Investigation of plume of laser-induced discharge plasma[J]. LASER TECHNOLOGY, 2020, 44(2): 173-177. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.006 |
[2] | LI Fengwu, ZUO Duluo, WANG Xinbing. Characteristics of discharge channels of air plasma induced by CO2 laser[J]. LASER TECHNOLOGY, 2017, 41(6): 831-835. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.013 |
[3] | LIU Xiao-lan, LI Xiao-qing. Relativistic Langmuir solitons in ultrapowerful laser plasma[J]. LASER TECHNOLOGY, 2013, 37(5): 627-630. DOI: 10.7510/jgjs.issn.1001-3806.2013.05.014 |
[4] | ZHU Xin-wang, WANG Xin-bing, FU Yan-feng, LU Yan-zhao, SHI Yu-hua. Research of collector mirrors of CO2 laser produced plasma EUV source[J]. LASER TECHNOLOGY, 2010, 34(6): 725-728. DOI: 10.3969/j.issn.1001-3806.2010.06.002 |
[5] | LI Xiao-fen, ZUO Du-luo, CHENG Zu-hai. Numerical simulation of discharge processes of a UV-preionized TEA CO2 laser[J]. LASER TECHNOLOGY, 2004, 28(5): 476-479. |
[6] | Wang Xinbing, Xie Mingjie, Lu Hong. The research of large volume homogeneous discharge for the transverse-flow CO2 lasers[J]. LASER TECHNOLOGY, 2003, 27(1): 71-72. |
[7] | Chen Jianping, Ni Xiaowu, Lu Jian, Bian Baomin, Wang Yawei. An optical fiber sensor for detecting laser-induced plasma shock waves[J]. LASER TECHNOLOGY, 2001, 25(2): 85-90. |
[8] | Zou Biao, Chen Jianping, Ni Xiaowu. Acoustic measurement of parameters of laser induced plasma on the target[J]. LASER TECHNOLOGY, 2000, 24(6): 366-369. |
[9] | Li Zhigang, Wang Shengbo, Guo Dahao, Wu Hongxing, Dai Yusheng. Experimental study of guiding and triggering of air discharges by laser induced plasma[J]. LASER TECHNOLOGY, 1999, 23(6): 332-334. |
[10] | Sun Haibin, Qiu Junlin, Gong Zhiwei, Zhou Xiaohuo, Hu Xuejin, Gu Huaimin, Chen Yongrong. Dynamic reserch of magnetically confined gas discharge stabilization[J]. LASER TECHNOLOGY, 1999, 23(5): 267-271. |