Citation: | ZHU Jiahao, YUAN Ling, WU Chuanbin, HE Wen, ZHANG Hongchao, LU Jian. Application of laser ultrasound in high voltage cable detection[J]. LASER TECHNOLOGY, 2025, 49(2): 263-270. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.017 |
Broken strand damage of the high-voltage cable may be caused due to environmental problems in use. And the existing detection technology cannot meet the requirements for detecting the broken strand damage of the part of the cable wrapped by the clamp on the high-voltage piezoelectric tower under the electrification condition. In order to solve the existing problems, laser ultrasound, a new non-contact laser ultrasonic detection method was adopted to detect the broken strand damage of a cable. The propagation of laser ultrasonic guided wave in high voltage cable was studied theoretically. The influence of small radius r, large radius R and axial pitch L on the dispersion curve of high voltage cable spiral structure was analyzed. A transient model was established to study the physical problem of laser excitation of ultrasonic guided waves in lossless cables. The amplitude and dispersion characteristics of the basic order modes L(0, 1), T(0, 1) and F(1, 1) of helical structures were analyzed by means of B-scan and 2-D Fourier transform signal analysis. The results show that L(0, 1), F(1, 1) modes in the frequency range of 0 kHz~ 100 kHz are the most suitable detection modes when using laser ultrasound to detect high-voltage cables. This result is helpful to the research of non-destructive testing of high voltage cables by non-contact laser ultrasound technology.
[1] |
WANG Q H, LIU G B, FANG B, et al. Analysis of causes for overhead insulated wires breakage[C]//2018 China International Confe-rence on Electricity Distribution (CICED). New York, USA: IEEE Press, 2018: 1279-1283.
|
[2] |
FAHMANI L, GARFAF J, BOUKHDIR K, et al. Unmanned aerial vehicles inspection for overhead high voltage transmission lines[C]//2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). New York, USA: IEEE Press, 2020: 1-7.
|
[3] |
DEBENEST P, GUARNIERI M. Expliner—from prototype towards a practical robot for inspection of high-voltage lines[C]//2010 1st International Conference on Applied Robotics for the Power Industry. New York, USA: IEEE Press, 2010: 1-6.
|
[4] |
EIGNER A, RETHMEIER K. An overview on the current status of partial discharge measurements on AC high voltage cable accessories[J]. IEEE Electrical Insulation Magazine, 2016, 32(2): 48-55. DOI: 10.1109/MEI.2016.7414231
|
[5] |
CASTRO P, LECUNA R, MANANA M, et al. Infrared temperature measurement sensors of overhead power conductors[J]. Sensors, 2020, 20(24): 7126. DOI: 10.3390/s20247126
|
[6] |
SHAHID M A, KHAN T M, ZAFAR T, et al. Health diagnosis scheme for in-service low voltage aerial bundled cables using super-heterodyned airborne ultrasonic testing[J]. Electric Power Systems Research, 2020, 180: 106162. DOI: 10.1016/j.epsr.2019.106162
|
[7] |
KWUN H, BARTELS K A. Experimental observation of elastic-wave dispersion in bounded solids of various configurations[J]. The Journal of the Acoustical Society of America, 1996, 99(2): 962-968. DOI: 10.1121/1.414624
|
[8] |
JOSEPH R L. Ultrasonic waves in solid media[M]. New York, USA: Cambridge University Press, 1999: 2473-2485.
|
[9] |
HAYASHI T, SONG W J, ROSE J L. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example[J]. Ultrasonics, 2003, 41(3): 175-183. DOI: 10.1016/S0041-624X(03)00097-0
|
[10] |
RIZZO P, LANZA D S F. Wave propagation in multi-wire strands by wavelet-based laser ultrasound[J]. Experimental Mechanics, 2004, 44: 407-415. DOI: 10.1007/BF02428094
|
[11] |
TREYSSÈDE F. Numerical investigation of elastic modes of propagation in helical waveguides[J]. The Journal of the Acoustical Society of America, 2007, 121(6): 3398-3408. DOI: 10.1121/1.2730741
|
[12] |
HAAG T, BEADLE B M, SPRENGER H, et al. Wave-based defect detection and interwire friction modeling for overhead transmission lines[J]. Archive of Applied Mechanics, 2009, 79: 517-528. DOI: 10.1007/s00419-008-0282-x
|
[13] |
MANZANARES M B, RAMOS M F, BALTAZAR A. Ultrasonic elastic modes in solid bars: An application of the plane wave expansion method[J]. The Journal of the Acoustical Society of America, 2010, 127(6): 3503-3510. DOI: 10.1121/1.3373402
|
[14] |
SCHAAL C, BISCHOFF S, GAUL L. Energy-based models for guided ultrasonic wave propagation in multi-wire cables[J]. International Journal of Solids and Structures, 2015, 64: 22-29. http://www.onacademic.com/detail/journal_1000037713677610_d2e4.html
|
[15] |
YÜCEL M K, LEGG M, KAPPATOS V, et al. An ultrasonic guided wave approach for the inspection of overhead transmission line cables[J]. Applied Acoustics, 2017, 122: 23-34. DOI: 10.1016/j.apacoust.2017.02.003
|
[16] |
ZHANG P F, TANG Zh F, LV F Z, et al. Numerical and experimental investigation of guided wave propagation in a multi-wire cable[J]. Applied Sciences, 2019, 9(5): 1028. DOI: 10.3390/app9051028
|
[17] |
HONG X B, LIN J F, ZHOU J X, et al. Array ultrasonic guided wave spiral focusing detection method for inner damage of messenger cable in covered area[J]. Mechanical Systems and Signal Processing, 2023, 188: 109977. DOI: 10.1016/j.ymssp.2022.109977
|
[18] |
颜鑫, 应恺宁, 戴鹭楠, 等. 基于物理信息神经网络的激光超声波场研究[J]. 激光技术, 2024, 48(1): 105-113. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.017
YAN X, YING K N, DAI L N, et al. Study on laser ultrasonic field based on physical information neural Network[J]. Laser Technology, 2024, 48(1): 105-113(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.01.017
|
[19] |
CHEN X, ZHU J S, LIN Y Z. Attenuation characteristics of low frequency longitudinal guided waves generated by magnetostrictive transducers in bridge cables[J]. Mechanical Systems and Signal Processing, 2022, 164: 108296. DOI: 10.1016/j.ymssp.2021.108296
|
[20] |
MANWAR R, KRATKIEWICZ K, AVANAKI K. Overview of ultrasound detection technologies for photoacoustic imaging[J]. Micromachines, 2020, 11(7): 692. DOI: 10.3390/mi11070692
|
[21] |
YUAN J J, HE J Z, YANG T, et al. Detection of defects of different types in lead by laser ultrasonic SAFT[J]. IOP Conference Series: Earth and Environmental Science, 2021, 675(1): 012211. DOI: 10.1088/1755-1315/675/1/012211
|
[22] |
赵艳, 沈中华, 陆健, 等. 激光在圆柱表面激发柱面瑞利波的有限元模拟[J]. 中国激光, 2006, 33(8): 1062-1065.
ZHAO Y, SHEN Zh H, LU J, et al. Simulation of laser inducing cylindrical rayleigh waves on isotropic cylinders by finite element method[J]. Chinese Journal of Lasers, 2006, 33(8): 1062-1065(in Chinese).
|
[23] |
何跃娟, 朱日宏, 沈中华, 等. 圆管中激光激发表面瑞利波极性的有限元分析[J]. 中国激光, 2006, 33(6): 765-769. DOI: 10.3321/j.issn:0258-7025.2006.06.010
HE Y J, ZHU R H, SHEN Zh H, et al. Analysis of laser-induced surface rayleigh waves polarity in hollow cylinders by finite element method[J]. Chinese Journal of Lasers, 2006, 33(6): 765-769(in Chinese). DOI: 10.3321/j.issn:0258-7025.2006.06.010
|
[24] |
沈中华, 袁玲, 张宏超, 等. 固体中的激光超声[M]. 北京: 人民邮电出版社, 2015: 2-3.
SHEN Zh H, YUAN L, ZHANG H Ch, et al. Laser ultrasound in solids[M]. Beijing: Posts and Telecommunications Press, 2015: 2-3(in Chinese).
|
[25] |
TREYSSÈDE F. Elastic waves in helical waveguides[J]. Wave Motion, 2008, 45(4): 457-470. DOI: 10.1016/j.wavemoti.2007.09.004
|
[26] |
BAKAR A H A, LEGG M, KONINGS D, et al. Ultrasonic guided wave measurement in a wooden rod using shear transducer arrays[J]. Ultrasonics, 2022, 119: 106583. DOI: 10.1016/j.ultras.2021.106583
|