Citation: | AI Jingsai, SUN Zheng, LI Lu. Advances in 4-D and 5-D photoacoustic imaging techniques[J]. LASER TECHNOLOGY, 2025, 49(2): 250-257. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.015 |
The emergence of photoacoustic imaging has expanded the application of biomedical imaging technology in cells, tissues, and living organisms to monitor a variety of physiological processes in complex internal environments. Photoacoustic imaging is essentially 3-D imaging, involving three spatial dimensions. By adding time or frequency dimensions, richer tissue information can be obtained, enabling qualitative and quantitative analysis of target morphological structures and functional components. This article reviews the research progress of 4-D (3-D+time or 3-D+spectrum), 5-D (3-D+time+spectrum) photoacoustic imaging technology and photoacoustic spectral unmixing technology. and The current problems were summarized. The clinical application prospects and possible development directions in the future were predicted.z
[1] |
WU D, TAO Ch, LIU X J, et al. Photoacoustic tomography reconstruction in a 2-D chaotic cavity using time reversal[J]. International Journal of Thermophysics, 2013, 34(8/9): 1646-1651.
|
[2] |
ERMILOV S A, KHAMAPIRAD T, ANDRE C, et al. Laser optoacoustic imaging system for detection of breast cancer[J]. Journal of Biomedical Optics, 2009, 14(2): 024007. DOI: 10.1117/1.3086616
|
[3] |
YIN B Zh, XING D, WANG Y, et al. Fast photoacoustic imaging system based on 320-element linear transducer array[J]. Physics in Medicine and Biology, 2004, 49(7): 1339-1346. DOI: 10.1088/0031-9155/49/7/019
|
[4] |
JEROME G, ARAQUE C M A, ALEXANDER D, et al. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals[J]. Medical Physics, 2013, 40(1): 013302. DOI: 10.1118/1.4770292
|
[5] |
HANS-PETER B, RICHARD S, MATTHEW F, et al. Whole-body three-dimensional optoacoustic tomography system for small animals[J]. Journal of Biomedical Optics, 2009, 14(6): 064007.
|
[6] |
LAN H R, JIANG D H, GAO F, et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel[J]. Photoacoustics, 2021, 22: 100270. DOI: 10.1016/j.pacs.2021.100270
|
[7] |
XIANG L Zh, WANG B, JI L J, et al. 4-D photoacoustic tomography[J]. Scientific Reports, 2013, 3(1): 1113. DOI: 10.1038/srep01113
|
[8] |
JIANG D, XU Y, LAN H, et al. Size-adjustable ring-shape photoacoustic tomography imager in vivo[J]. Journal of Biophotonics, 2022, 15(7): e202200070. DOI: 10.1002/jbio.202200070
|
[9] |
YANG J, CHOI S, KIM C. Practical review on photoacoustic computed tomography using curved ultrasound array transducer[J]. Biomedical Engineering Letters, 2021, 12(1): 1-17.
|
[10] |
SUN Y, WANG Y B, LI W Zh, et al. Real-time dual-modal photoacoustic and fluorescence small animal imaging[J]. Photoacoustics, 2024, 36: 100593. DOI: 10.1016/j.pacs.2024.100593
|
[11] |
CHO S, KIM M, AHN J, et al. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo[J]. Nature Communications, 2024, 15(1): 1444. DOI: 10.1038/s41467-024-45273-4
|
[12] |
DEÁN-BEN X L, JAMES F S, DANIEL R. High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion[J]. Scientific Reports, 2015, 5(1): 10133. DOI: 10.1038/srep10133
|
[13] |
DEÁN-BEN X L, RAZANSKY D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths[J]. Optics Express, 2013, 21(23): 28062-28071. DOI: 10.1364/OE.21.028062
|
[14] |
AMY L H, DEÁN-BEN X L, IVANA I, et al. Characterization of cardiac dynamics in an acute myocardial infarction model by four-dimensional optoacoustic and magnetic resonance imaging[J]. Theranostics, 2017, 7(18): 4470-4479. DOI: 10.7150/thno.20616
|
[15] |
MITRADEEP S, MAILYN P, GILLES R, et al. Motion rejection and spectral unmixing for accurate estimation of in vivo oxygen saturation using multispectral optoacoustic tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70(12): 1671-1681. DOI: 10.1109/TUFFC.2023.3306592
|
[16] |
余双春, 袁杰. 复频域实时重建医学光声图像的研究[J]. 南京大学学报(自然科学), 2016, 52(3): 536-541.
YU Sh Ch, YUAN J. Realtime reconstruction of the medical complex frequency domain photoacoustic image[J]. Journal of Nanjing University Natural Science, 2016, 52(3): 536-541(in Chinese).
|
[17] |
JEON S, PARK E Y, CHOI W, et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans[J]. Photoacoustics, 2019, 15: 100136. DOI: 10.1016/j.pacs.2019.100136
|
[18] |
DEÁN-BEN X L, BAY E, RAZANSKY D. Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data[J]. Scientific Reports, 2014, 4(1): 5878. DOI: 10.1038/srep05878
|
[19] |
NEUSCHMELTING V, BURTON N C, LOCKAU H, et al. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation[J]. Photoacoustics, 2016, 4(1): 1-10. DOI: 10.1016/j.pacs.2015.12.001
|
[20] |
JIAN X H, DONG F L, XU J, et al. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating tissue components[J]. International Journal of Thermophysics, 2018, 39(5): 1-9.
|
[21] |
CHUAH S Y, ATTIA A B E, HO C J H, et al. Volumetric multispectral optoacoustic tomography for 3-dimensional reconstruction of skin tumors: A further evaluation with histopathologic correlation[J]. The Journal of Investigative Dermatology, 2019, 139(2): 481-485. DOI: 10.1016/j.jid.2018.08.014
|
[22] |
REGENSBURGER A P, WAGNER A L, DANKO V, et al. Multispectral optoacoustic tomography for non-invasive disease phenotyping in pediatric spinal muscular atrophy patients[J]. Photoacoustics, 2022, 25: 100315. DOI: 10.1016/j.pacs.2021.100315
|
[23] |
LISANNE G, EPAMEINONDAS G, CARLOTTA B, et al. Preoperative mapping of lymphatic vessels by multispectral optoacoustic tomography[J]. Lymphatic Research and Biology, 2022, 20(6): 659-664. DOI: 10.1089/lrb.2021.0067
|
[24] |
HUANG N, HE M, SHI H Sh, et al. Curved-array-based multispectral photoacoustic imaging of human finger joints[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(7): 1452-1459. DOI: 10.1109/TBME.2017.2758905
|
[25] |
KUMAR M D, CHRISTOS M, MICHAEL M, et al. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region[J]. Biomedical Optics Express, 2018, 9(4): 1762-1770. DOI: 10.1364/BOE.9.001762
|
[26] |
TAKASHI B, CONLEY N C, CHOI S W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser[J]. Biomedical Optics Express, 2018, 9(1): 276-288. DOI: 10.1364/BOE.9.000276
|
[27] |
SEONYEONG P, BROOKS F J, UMBERTO V, et al. Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast[J]. Journal of Biomedical Optics, 2022, 27(3): 036001.
|
[28] |
CHRISTOPH D, IVAN O, BASAK K C, et al. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3182-3193. DOI: 10.1109/TMI.2022.3180115
|
[29] |
O'KELLY D, GUO Y H, MASON R P. Evaluating online filtering algorithms to enhance dynamic multispectral optoacoustic tomography[J]. Photoacoustics, 2020, 19: 100184. DOI: 10.1016/j.pacs.2020.100184
|
[30] |
JIAN H X, DONG L F, XU J, et al. Frequency domain analysis of multiwavelength photoacoustic signals for differentiating tissue components[J]. International Journal of Thermophysics, 2018, 39(5): 1-9.
|
[31] |
FADHEL N M, HYSI E, ASSI H, et al. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation[J]. Photoacoustics, 2020, 19: 100182. DOI: 10.1016/j.pacs.2020.100182
|
[32] |
ANIWAT J, BO L, LIU Y F, et al. Recurrent and convolution neural networks for sequential multispectral optoacoustic tomography (MSOT) imaging[J]. Journal of Biophotonics, 2023, 16(11): e202300142. DOI: 10.1002/jbio.202300142
|
[33] |
JNAWALI K, CHINNI B, DOGRA V, et al. Deep 3D convolutional neural network for automatic cancer tissue detection using multispectral photoacoustic imaging[J]. Proceedings of the SPIE, 2019, 10955: 109551D.
|
[34] |
EGHBAL A, ATAHAR M, SREYANKAR N, et al. Classification of human ovarian cancer using functional, spectral, and imaging features obtained from in vivo photoacoustic imaging[J]. Biomedical Optics Express, 2019, 10(5): 2303-2317. DOI: 10.1364/BOE.10.002303
|
[35] |
THOMAS K, MARTIN F. Multiple illumination learned spectral decoloring for quantitative optoacoustic oximetry imaging[J]. Journal of Biomedical Optics, 2021, 26(8): 085001.
|
[36] |
MA X, CAO M, SHEN Q H, et al. Adipocyte size evaluation based on photoacoustic spectral analysis combined with deep learning method[J]. Applied Sciences, 2018, 8(11): 2178. DOI: 10.3390/app8112178
|
[37] |
YOON H, LUKE P G, EMELIANNOV Y S. Impact of depth-dependent optical attenuation on wavelength selection for spectroscopic photoacoustic imaging[J]. Photoacoustics, 2018, 12: 46-54. DOI: 10.1016/j.pacs.2018.10.001
|
[38] |
EUNWOO P, LEE Y J, LEE C, et al. Effective photoacoustic absorption spectrum for collagen-based tissue imaging[J]. Journal of Biomedical Optics, 2020, 25(5): 1-8.
|
[39] |
HIRASAWA T, IWATATE R J, KAMIYA M, et al. Multispectral photoacoustic imaging of tumours in mice injected with an enzyme-activatable photoacoustic probe[J]. Journal of Optics, 2017, 19(1): 014002. DOI: 10.1088/2040-8978/19/1/014002
|
[40] |
JVRGEN G, DELIOLANIS N C, ANDREAS B, et al. Blind source unmixing in multi-spectral optoacoustic tomography[J]. Optics Express, 2011, 19(4): 3175-3184. DOI: 10.1364/OE.19.003175
|
[41] |
GRASSO V, HASSAN H W, MIRTAHERI P, et al. Recent advances in photoacoustic blind source spectral unmixing approaches and the enhanced detection of endogenous tissue chromophores[J]. Frontiers in Signal Processing, 2022, 2: 984901. DOI: 10.3389/frsip.2022.984901
|
[42] |
ARABUL M U, RUTTEN M C M, BRUNEVAL P, et al. Unmixing multi-spectral photoacoustic sources in human carotid plaques using non-negative independent component analysis[J]. Photoacoustics, 2019, 15: 100140. DOI: 10.1016/j.pacs.2019.100140
|
[43] |
DING L, DEÁN-BEN X L, LUTZWEILER C, et al. Efficient non-negative constrained model-based inversion in optoacoustic tomography[J]. Physics in Medicine and Biology, 2015, 60(17): 6733-6750. DOI: 10.1088/0031-9155/60/17/6733
|
[44] |
DING L, DEÁN-BEN X L, BURTON N C, et al. Constrained inversion and spectral unmixing in multispectral optoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 2017, 36(8): 1676-1685. DOI: 10.1109/TMI.2017.2686006
|
[45] |
DEÁN-BEN X L, DELIOLANIS C N, NTZIACHRISTOS V, et al. Fast unmixing of multispectral optoacoustic data with vertex component analysis[J]. Optics and Lasers in Engineering, 2014, 58: 119-125.
|
[46] |
GRASSO V, HOLTHOF J, JOSE J. An automatic unmixing approach to detect tissue chromophores from multispectral photoacoustic imaging[J]. Sensors, 2020, 20(11): 3235. DOI: 10.3390/s20113235
|
[47] |
GRASSO V, REGINE W, JITHIN J. Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach[J]. Photoacoustics, 2022, 26: 100367. DOI: 10.1016/j.pacs.2022.100367
|
[48] |
DURAIRAJ D A, AGRAWAL S, JOHNSTONBAUGH K, et al. Unsupervised deep learning approach for photoacoustic spectral unmixing[J]. Proceedings of the SPIE, 2020, 11240: 112403H.
|
[49] |
CAMILO C, CATARINA M, AMIR G, et al. Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging[J]. Scientific Reports, 2023, 13(1): 4119. DOI: 10.1038/s41598-023-31343-y
|
[50] |
CAMILO C, NASTARAN R M, AMIR G, et al. Deep learning assisted classification of spectral photoacoustic imaging of carotid plaques[J]. Photoacoustics, 2023, 33: 100544. DOI: 10.1016/j.pacs.2023.100544
|
[51] |
DEÁN-BEN X L, RAZANSKY D. Adding fifth dimension to optoacoustic imaging: Volumetric time-resolved spectrally enriched tomography[J]. Light: Science & Applications, 2014, 3(1): e137.
|
[52] |
MORSCHER S, DRIESSEN H P W, CLAUSSEN J, et al. Semi-quantitative multispectral optoacoustic tomography (MSOT) for volumetric PK imaging of gastric emptying[J]. Photoacoustics, 2014, 2(3): 103-110. DOI: 10.1016/j.pacs.2014.06.001
|
[53] |
HERZOG E, TARUTTIS A, BEZIERE N, et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography[J]. Radiology, 2012, 263(2): 461-468. DOI: 10.1148/radiol.11111646
|
[54] |
GOTTSCHALK S, FEHM T F, DEÁN-BEN X L, et al. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography[J]. Journal of Cerebral Blood Flow & Metabolism, 2015, 35(4): 531-535.
|
[55] |
REBER J, WILLERSHÄUSER M, KARLAS A, et al. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients[J]. Cell Metabolism, 2018, 27(3): 689-701. DOI: 10.1016/j.cmet.2018.02.002
|
[56] |
AGRAWAL S, FADDEN C, DANGI A, et al. Light-emitting-diode-based multispectral photoacoustic computed tomography system[J]. Sensors, 2019, 19(22): 4861. DOI: 10.3390/s19224861
|
[57] |
NEDA D, BERKAN L, ÖZBEK A, et al. Deep learning of image-and time-domain data enhances the visibility of structures in optoacoustic tomography[J]. Optics Letters, 2021, 46(13): 3029-3032. DOI: 10.1364/OL.424571
|