Processing math: 100%
Advanced Search
YE Hanli, GAO Jun, WANG Xinlong, CHI Hao, CHEN Jiong, CUI Suochao, GENG Anbing. Frequency-stabilized laser diode based on the saturated absorption spectrum of Cs D2 line[J]. LASER TECHNOLOGY, 2025, 49(2): 245-249. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.014
Citation: YE Hanli, GAO Jun, WANG Xinlong, CHI Hao, CHEN Jiong, CUI Suochao, GENG Anbing. Frequency-stabilized laser diode based on the saturated absorption spectrum of Cs D2 line[J]. LASER TECHNOLOGY, 2025, 49(2): 245-249. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.014

Frequency-stabilized laser diode based on the saturated absorption spectrum of Cs D2 line

More Information
  • Received Date: January 03, 2024
  • Revised Date: March 19, 2024
  • Laser diode were easily affected by temperature, vibration and other external factors during free-running operation, and the frequency stability of the output laser was difficult to meet the technical requirements of the fields such as quantum precision measurement, high-precision spectroscopy and laser communication. In order to obtain output laser with stable frequency, a frequency-stabilized laser diode was designed, which was constructed based on the ultra precision energy level structure of the D2 transition line of 133Cs atoms and the principle of saturated absorption. The atomic transitionline of |62 S1/2,F=4|62P3/2,F=5 was taken as the reference standard of the frequency locked loop (FLL). The results show that, the out-put laser frequency was stabilized by feedback control method. The frequency stability is measured to be 3.88×10-12 at the integration time of 1 s, and the lowest frequency stability is 1.70×10-12 at the integration time of 16 s. The long-term frequency fluctuation of 12 h is less than 140 kHz measured from the beat frequency signal. The linewidth is 438.41 kHz@10 μs. The responding rms power stability is 6.11×10-4.The volume of the whole device is 9×103 cm3. The combination of saturated absorption spectroscopy and feedback control can significantly reduce the frequency fluctuation of free-running semiconductor lasers. The laser has good performance in some key indicators such as frequency stabilization. It has been miniaturized, which makes it easy to move and maintain. And it operates stably for a long time and is capable of meeting the technical requirements for frequency-locked laser light sources in applications such as quantum measurements.

  • [1]
    贡昊, 王宇, 白金海, 等. 半导体激光器稳频综述[J]. 计测技术, 2019, 39(3): 1-7.

    GONG H, WANG Y, BAI J H, et al. Review of semiconductor laser frequency stabilization[J]. Metrology and Measurement Technology, 2019, 39(3): 1-7(in Chinese).
    [2]
    WU Y, SUN B, LI X. Semiconductor laser active frequency stabilization technologies: A review[J]. Journal of the Korean Physical Society, 2021, 79(9): 795-809. DOI: 10.1007/s40042-021-00308-7
    [3]
    LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701. DOI: 10.1103/RevModPhys.87.637
    [4]
    HERRMANN S, SENGER A, MOHLE K, et al. Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level[J]. Physical Review, 2009, D80(10): 105011.
    [5]
    HAFFNER H, ROOS C F, BLATT R. Quantum computing with trapped ions[J]. Physics Reports, 2008, 469(4): 155-203. DOI: 10.1016/j.physrep.2008.09.003
    [6]
    MACADAM K B, STEINBACH A, WIEMAN C. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb[J]. American Journal of Physics, 1992, 60(12): 1098-1111. DOI: 10.1119/1.16955
    [7]
    鱼志健, 薛文祥, 赵文宇, 等. 用于POP铷原子钟的DFB激光器自动稳频技术研究[J]. 时间频率学报, 2015, 38(3): 129-138.

    YU Zh J, XUE W X, ZHAO W Y, et al. Automatic frequency stabilization system of DFB diode laser for POP Rb atomic clock[J]. Journal of Time and Frequency, 2015, 38(3): 129-138(in Chinese).
    [8]
    WANG H M, XU Z S, MA S C, et al. Artificial modulation-free Pound-Drever-Hall method for laser frequency stabilization[J]. Optics Letters, 2019, 44(23): 5816-5819. DOI: 10.1364/OL.44.005816
    [9]
    赵杏文, 韦强, 李东旭, 等. 激光抽运小型铯原子钟研制进展[J]. 时间频率学报, 2022, 45(1): 1-8.

    ZHAO X W, WEI Q, LI D X, et al. Progress on optically pumped cesium beam frequency standard[J]. Journal of Time and Frequency, 2022, 45(1): 1-8(in Chinese).
    [10]
    缪鑫, 王琦, 邓勇, 等. 基于温度闭环反馈的He-Ne激光器热稳频系统[J]. 激光技术, 2022, 46(6): 755-759.

    MIU X, WANG Q, DENG Y, et al. Thermal frequency stabilization system of He-Ne laser based on temperature closed-loop feedback[J]. Laser Technology, 2022, 46(6): 755-759(in Chinese).
    [11]
    张岩, 刘超, 肖长顺, 等. 内调制技术和Pound-Drever-Hall技术对894.6 nm倍频腔的稳频比较[J]. 激光技术, 2017, 41(1): 47-50.

    ZHANG Y, LIU Ch, XIAO ChSh, et al. Comparison of frequency locking of 894.6 nm frequency doubling cavity using intra-modulation technology and Pound-Drever-Hall technology[J]. Laser Technology, 2017, 41(1): 47-50(in Chinese).
    [12]
    LIU X, BOUDOT R. A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1line[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(10): 2852-2855. DOI: 10.1109/TIM.2012.2196399
    [13]
    MAJUMDER P, YADAV H, TIRUPATHI R, et al. Advancing frequency locking: Modified FPGA-guided direct modulation spectroscopy for laser stabilization[J]. Optics & Laser Technology, 2024, 170: 110247.
    [14]
    余凤翔. 铯喷泉钟激光稳频技术和原子选态方法研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2019.

    YU F X. Research on laser frequency stabilization technology and atomic state selection method of the cesium fountain clock[D]. Xi'an: National Time Service Center, Chinese Academy of Sciences, 2019(in Chinese).
    [15]
    张沛. 基于FPGA的半导体激光器稳频系统[D]. 太原: 山西大学, 2023.

    ZHANG P. Semiconductor laser stabilization system based on FPGA[D]. Taiyuan: Shanxi University, 2023(in Chinese).
    [16]
    薛洪波. 半导体激光器稳频系统研制及其在原子干涉仪中的应用[D]. 北京: 中国地质大学(北京), 2012.

    XUE H B. Research on a frequency stabilization system for the ECDL and its applications in the atomicinter ferometry[D]. Beijing: China University of Geosciences (Beijing), 2012(in Chinese).
    [17]
    NEGNEVITSKY V, TURNER L D. Wideband laser locking to an atomic reference with modulation transfer spectroscopy[J]. Optics Express, 2013, 21(3): 3103-3113. DOI: 10.1364/OE.21.003103
    [18]
    SOSA K, OREGGIONI J, FAILACHE H. Miniaturized saturated absorption spectrometer[J]. Review of Scientific Instruments, 2020, 91(8): 083101. DOI: 10.1063/1.5144484
    [19]
    THERON F, CARRAZ O, RENON G, et al. Narrow linewidth single laser source system for onboard atom interferometry[J]. Applied Physics, 2015, B118: 1-5.
    [20]
    HANNIG S, MIELKE J, FENSKE J A, et al. A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet[J]. Review of Scientific Instruments, 2018, 89(1): 013106 DOI: 10.1063/1.5005515
    [21]
    ROY A, SHARMA L, CHAKRABORTY I, et al. An FPGA based all-in-one function generator, lock-in amplifier and auto-relockable PID system[J]. Journal of Instrumentation, 2019, 14(5): P05012. DOI: 10.1088/1748-0221/14/05/P05012
    [22]
    刘涛, 闫树斌, 李利平, 等. 铯原子调制转移光谱在激光稳频中的应用[J]. 光子学报, 2003, 32(1): 5-8.

    LIU T, YAN Sh B, LI L P, et al. Frequency stabilization of laser diode via modulation transfer spectrum in cesium vapor cell[J]. Acta Photonica Sinica, 2003, 32(1): 5-8(in Chinese).
    [23]
    林弋戈, 陈伟亮, 李天初, 等. 利用取样积分实现激光饱和吸收一次谐波稳频[J]. 中国激光, 2009, 36(5): 1075-1079.

    LIN Y G, CHEN W L, LI T Ch, et al. First harmonic saturated absorption frequency stabilization of lasers using sampling integration technique[J]. Chinese Journal of Lasers, 2009, 36(5): 1075-1079(in Chinese).
    [24]
    王青, 赖舜男, 齐向晖, 等. 基于饱和吸收谱的激光稳频实验系统设计[J]. 实验技术与管理, 2021, 38(12): 23-28.

    WANG Q, LAI Sh N, QI X H, et al. Design of laser frequency stabilization experiment system based on saturated absorption spectroscopy[J]. Experimental Technology and Management, 2021, 38(12): 23-28(in Chinese).
    [25]
    张胤, 王青. 自动稳频半导体激光器研究[J]. 中国激光, 2014, 41(6): 0602001.

    ZHANG Y, WANG Q. Research of automatic frequency stability diode laser[J]. Chinese Journal of Lasers, 2014, 41(6): 0602001(in Chinese).
    [26]
    黄怿, 尤越, 邓传鲁, 等. 基于电流自适应补偿的高稳定度调制光栅Y分支型激光器控制系统[J]. 光子学报, 2023, 52(2): 0214004.

    HUANG Y, YOU Y, DENG Ch L, et al. High-stability MG-Y laser control system based on self-adaptive current compensation[J]. Acta Photonica Sinica, 2023, 52(2): 0214004(in Chinese).
    [27]
    YANG T, LI W S, CHEN W J. Design of new-style driving and temperature control circuit forlow power diode laser[J]. Infrared and Laser Engineering, 2022, 51(2): 20210764(in Chinese).

Catalog

    Article views (6) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return