Citation: | ZHANG Shiyu, HUANG Xueying, LIAO Penghao, ZHANG Rongzhu. Application of harmonic regeneration noise reduction algorithm in photoelectric musical sound detection[J]. LASER TECHNOLOGY, 2025, 49(2): 227-232. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.011 |
For the photoelectric detection technology of music signal, an improved harmonic reconstruction algorithm was proposed to reduce the system noise while retaining the timbre of music. Firstly, the priori signal-to-noise ratio of the signal was calculated, and Wiener filter for noise reduction processing was constructed. Then a comb filter design scheme was proposed to address the characteristic of multiple harmonic components in music signals. After performing the inverse Fourier transform on the power spectrum of the music signal, the number of sampling points within one fundamental period of the music signal was determined. The number of samples was used as the node parameter of the comb filter, and the harmonic enhancement of the music signal was thus accomplished. The noise reduction effect was theoretically analyzed through the calculation of the priori signal-to-noise ratio, and then the noise reduction effect of different noise reduction algorithms was obtained through experimental verification. The results show that the algorithm can perform denoising well. Compared with the traditional harmonic reconstruction algorithm, the performance of reducing the log-spectral distortion of music signal is improved by more than 50% when the signal-to-noise ratio is -5 dB, 0 dB and 5 dB, and the timbre of the music signal can be well preserved. This study provides a reference for timbre analysis and evaluation in performances of different types of musical instruments.
[1] |
李民. 激光测振在振动计量中的若干技术问题的研究[D]. 杭州: 浙江大学, 2004: 5-14.
LI M. Research on several technology problems of low frequency laser vibration measuring system in the field of vibration quantifivation[D]. Hangzhou: Zhejiang University, 2004: 5-14(in Chinese).
|
[2] |
龚靖, 伍波, 万家硕, 等. 基于WDR联合FFT方法的脉冲相干测速精度研究[J]. 激光技术, 2023, 47(1): 92-97.
GONG J, WU B, WAN J Sh, et al. Research on the precision of pulse coherent velocimetry based on WDR combined FFT method[J]. Laser Technology, 2023, 47(1): 92-97(in Chinese).
|
[3] |
许根源. 全自动血凝仪的光电检测系统设计与实现[D]. 镇江: 江苏科技大学, 2017: 29-30.
XU G Y. Design and realization of photoelectric detection system of automatic blood coagulation instrument[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017: 29-30(in Chinese).
|
[4] |
吴艳. 激光音频信号探测中的噪声抑制[D]. 成都: 四川大学, 2021: 48-60.
WU Y. Noise suppression in laser audio signal detection[D]. Chengdu: Sichuan University, 2021: 48-60(in Chinese).
|
[5] |
许春冬, 徐琅, 周滨. 结合优化U-Net和残差神经网络的单通道语音增强算法[J]. 现代电子技术, 2022, 45(9): 35-40.
XU Ch D, XU L, ZHOU B. Single channel speech enhancement algorithm combining optimized U-Net and residual network[J]. Modern Electronics Technique, 2022, 45(9): 35-40(in Chinese).
|
[6] |
陈昱帆. 可穿戴式设备多传感器语音增强算法研究[D]. 重庆: 重庆邮电大学, 2022: 46-48.
CHEN Y F. Research on multi-sensor speech enhancement algorithm for wearable devices[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022: 46-48(in Chinese).
|
[7] |
高雨轩. 基于深度学习的音乐音频分类研究[D]. 广州: 华南理工大学, 2020: 7-9.
GAO Y X. Research on music audio classification based on deep learning[D]. Guangzhou: South China University of Technology, 2020: 7-9(in Chinese).
|
[8] |
赵庆磊, 邵峰晶, 孙仁诚, 等. 乐器识别中频谱特征与聚合策略性能评估[J]. 青岛大学学报(自然科学版), 2021, 34(2): 38-44.
ZHAO Q L, SHAO F J, SUN R Ch, et al. Performance evaluation of spectrum features and aggregation strategies for musical instrument recognition[J]. Journal of Qingdao University (Natural Science Edition), 2021, 34(2): 38-44(in Chinese).
|
[9] |
PRABAVATHY S, RATHIKARANI V, DHANALAKSHMI P. Cla-ssification of musical instruments using SVM and KNN[J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 9(7): 1186-1190. DOI: 10.35940/ijitee.G5836.059720
|
[10] |
王佳佳, 周克良. 优化的维纳滤波算法在心音信号中降噪的应用[J]. 沈阳大学学报(自然科学版), 2021, 33(2): 150-154.
WANG J J, ZHOU K L. Application of optimized wiener filter algorithm for noise reduction in heart sound signals[J]. Journal of Shenyang University (Natural Science Edition), 2021, 33(2): 150-154(in Chinese).
|
[11] |
潘嘉琦, 曹科才, 丁嘉存, 等. 基于维纳滤波的无人机语音系统的设计与实现[J]. 计算机与数字工程, 2021, 49(10): 2161-2167.
PAN J Q, CAO K C, DING J C, et al. Design and implementation of UAV phonetic system based on wiener filtering[J]. Computer and Digital Engineering, 2021, 49(10): 2161-2167(in Chinese).
|
[12] |
王方杰, 金赟. 基于谐波重构滤波的数字助听器语音增强算法[J]. 电子器件, 2018, 41(6): 1605-1611.
WANG F J, JIN Y. Speech enhancement based on harmonic reconstruction filter used in digital hearing aids[J]. Chinese Journal of Electron Devices, 2018, 41(6): 1605-16117(in Chinese).
|
[13] |
邵睿, 彭硕, 查文文, 等. 基于BiLSTM的生猪音频识别[J]. 合肥学院学报(综合版), 2022, 39(2): 113-119.
SHAO R, PENG Sh, ZHA W W, et al. Pig audio recognition based on BiLSTM[J]. Journal of Hefei University(Comprehensive Edition), 2022, 39(2): 113-119(in Chinese).
|
[14] |
EPHRAIM Y, MALAH D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(6): 1109-1121. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1164453
|
[15] |
PLAPOUS C, MARRO C, SCALART P. Improved signal-to-noise ratio estimation for speech enhancement[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2098-2108.
|
[16] |
欧世峰, 赵晓晖. 改进型先验信噪比估计语音增强算法[J]. 吉林大学学报(工学版), 2009, 39(3): 787-791.
OU Sh F, ZHAO X H. Modified priori SNR estimation for noisy speech enhancement[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(3): 787-791(in Chinese).
|
[17] |
魏静, 王雪婷, 刘法胜. 一种融合相位的先验信噪比算法[J]. 电声技术, 2022, 46(12): 112-115.
WEI J, WANG X T, LIU F Sh. A priori signal-to-noise ratio algorithm based on phase[J]. Audio Engineering, 2022, 46(12): 112 -115(in Chinese).
|
[18] |
PLAPOUS C, MARRO C, SCALART P. Speech enhancement using harmonic regeneration[C]//Proceedings of IEEE International Conference on Acoustics. Philadelphia, USA: IEEE Press, 2005: 157-160.
|
[19] |
王杰, 杨程程, 莫嘉永, 等. 谐波重构先验信噪比估计算法[J]. 计算机工程与应用, 2018, 54(7): 44-48.
WANG J, YANG Ch Ch, MO J Y, et al. A priori SNR estimator based on harmonic regeneration[J]. Computer Engineering and Applications, 2018, 54(7): 44-48(in Chinese).
|
[20] |
夏均忠, 刘远宏, 冷永刚, 等. 微弱信号检测方法的现状分析[J]. 噪声与振动控制, 2011, 31(3): 156-161.
XIA J Zh, LIU Y H, LENG Y G, et al. Analysis of methods of weak signal detection[J]. Noise and Vibration Control, 2011, 31(3): 156-161(in Chinese).
|
[21] |
张天骐, 张战, 权进国, 等. 语音信号基音检测的二次谱方法[J]. 计算机应用, 2005, 25(4): 934-936.
ZHANG T Q, ZHANG Zh, QUAN J G, et al. Power spectrum reprocessing approach for pitch detection of speech[J]. Journal of Computer Applications, 2005, 25(4): 934-936(in Chinese).
|
[22] |
VALIN J M, ROUAT J, MICHAUD F. Microphone array post-filter for separation of simultaneous non-stationary sources[C]//2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, Canada: IEEE Press, 2004: 224.
|