Advanced Search
WANG Wenrong, QI Meng, LI Yuanji, FENG Jinxia, ZHANG Kuanshou. Measurement of Verdet constant of Er, Yb : YAl3(BO3)4 crystal[J]. LASER TECHNOLOGY, 2025, 49(2): 223-226. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.010
Citation: WANG Wenrong, QI Meng, LI Yuanji, FENG Jinxia, ZHANG Kuanshou. Measurement of Verdet constant of Er, Yb : YAl3(BO3)4 crystal[J]. LASER TECHNOLOGY, 2025, 49(2): 223-226. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.010

Measurement of Verdet constant of Er, Yb : YAl3(BO3)4 crystal

More Information
  • Received Date: January 17, 2024
  • Revised Date: February 22, 2024
  • In order to construct a unidirectional traveling-wave ring resonator or non-planar ring resonator that utilizes the magneto-optical effect of the laser gain medium itself without additional magneto-optical crystals, so as to meet the application requirements of preparing continuous wave single-frequency 1.5 μm solid-state lasers with power greater than watts, the Verdet constants of Er, Yb : YAl3(BO3)4 crystals were experimentally investigated by means of magneto-optical modulation technique combined with balanced detection. The Verdet constants of Er, Yb : YAl3(BO3)4 crystals at different doped atomic fractions and temperatures were obtained. The results show that the measured Verdet constants of Er, Yb : YAl3(BO3)4 crystals with different doped atomic fractions of Yb ions, namely 10%, 15% and 25%, are 48.11°/(T·m), 33.05°/(T·m) and 10.88°/(T·m), respectively. When the temperature of Er, Yb : YAl3(BO3)4 crystal with a Yb3+ doped atomic fractions of 25% is increased from 13 ℃ to 38 ℃, the Verdet constant showes a nonlinear decrease from 11.40°/(T·m) to 10.15°/(T·m). The Verdet constant of the Er, Yb : YAl3(BO3)4 crystal is comparable with that of the yttrium aluminum garnet crystal. Moreover, the crystal exhibits paramagnetism. The magneto-optic rotation performance of the gain medium can be improved by either employing the low doped crystal or lowering the crystal temperature. This study provides a reference for the construction of continuous wave single frequency solid-state lasers without additional magneto-optical crystals.

  • [1]
    KRISTENSEN M, BLOK F J, van EIJKELENBORG M A, et al. Onset of a collisional modification of the Faraday effect in a high-density atomic gas[J]. Physical Review, 1995, A51(2): 1085-1096.
    [2]
    LABEYRIE G, MINIATURA C, KAISER R. Large Faraday rotation of resonant light in a cold atomic cloud[J]. Physical Review, 2001, A64(3): 033402.
    [3]
    FRANKE-ARNOLD S, ARNDT M, ZEILINGER A. Magneto-optical effects with cold lithium atoms[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 2001, 34(12): 2527-2536. DOI: 10.1088/0953-4075/34/12/316
    [4]
    PANDEY K, WASAN A, NATARAJAN V. Coherent control of magneto-optic rotation[J]. Journal of Physics, 2008, B41(22): 225503.
    [5]
    王吉明, 吴福全, 封太忠, 等. 斜入射时BiCaInVIG和GdYBiIG晶体旋光角变化的研究[J]. 激光技术, 2004, 28(4): 394-396. https://www.jgjs.net.cn/article/id/14181

    WANG J M, WU F Q, FENG T Zh, et al. The change of rotation angle for BiCaInVIG and GdYBiIG crystal at oblique incidence[J]. Laser Technology, 2004, 28(4): 394-396(in Chinese). https://www.jgjs.net.cn/article/id/14181
    [6]
    WILLIAMSON L A, CHEN Y H, LONGDELL J J. Magneto-optic modulator with unit quantum efficiency[J]. Physical Review Letters, 2014, 113(20): 203601. DOI: 10.1103/PhysRevLett.113.203601
    [7]
    PINTUS P, RANZANI L, PINNA S, et al. An integrated magneto-optic modulator for cryogenic applications[J]. Nature Electronics, 2022, 5(9): 604-610. DOI: 10.1038/s41928-022-00823-w
    [8]
    KEMMET S, MINA M, WEBER R J. Current-controlled, high-speed magneto-optic switching[J]. IEEE Transactions on Magnetics, 2010, 46(6): 1829-1831. DOI: 10.1109/TMAG.2010.2043925
    [9]
    MURAI T, SHOJI Y, NISHIYAMA N, et al. Nonvolatile magneto-optical switches integrated with a magnet stripe array[J]. Optics Express, 2020, 28(21): 31675-31685. DOI: 10.1364/OE.403129
    [10]
    HARRIS L, OTTAWAY D, VEITCH P J. The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm[J]. Applied Physics, 2012, B106(2): 429-433.
    [11]
    AL-BASHEER W. Verdet constant determination of dielectric media using a new versatile, portable and low-cost magneto-optical rotator[J]. European Journal of Physics, 2020, 41(4): 045804. DOI: 10.1088/1361-6404/ab8540
    [12]
    MOLLAEE M, LUCAS P, ARI J, et al. High Verdet constant of Te20As30Se50 glass in the mid-infrared[J]. Optics Letters, 2020, 45(8): 2183-2186. DOI: 10.1364/OL.390236
    [13]
    YAO P, CHEN X, HAO P, et al. Introduction and measurement of the effective Verdet constant of spun optical fibers[J]. Optics Express, 2021, 29(15): 23315-23330. DOI: 10.1364/OE.432418
    [14]
    BARCZAK K, CIMEK J, STEPIEN R, et al. Measurements of Verdet constant in heavy metal oxide glasses for magneto-optic fiber current sensors[J]. Optical Materials, 2022, 123(4): 111942.
    [15]
    TAMARU Y, FUCHIMUKAI A, UEHARA H, et al. Verdet constant dispersion of magnesium fluoride for deep-ultraviolet and vacuum-ultraviolet Faraday rotators[J]. Optics Express, 2023, 31(15): 7807-7812.
    [16]
    WU J, ZHENG K, ZHAO Y, et al. Effective Faraday rotator based on the TbYO3 crystal with a high Verdet constant and a high thermal conductivity[J]. Optics Letters, 2023, 48(20): 5313-5315.
    [17]
    LEONYUK N I, WANG J, DAWES J M, et al. New nonlinear optical and laser crystals of borate family[J]. Journal of Materials Science: Materials in Electronics, 2007, 18(S1): 293-297.
    [18]
    CHENG W, ZHANG T, JIANG Z, et al. 4.55 W continue-wave dual-end pumping of Er ∶Yb : YAl3(BO3)4 microchip laser at 1.5 μm[J]. Applied Physics Letters, 2023, 123(17): 171101.
    [19]
    朱海瑞, 闫丽华, 李渊骥, 等. 420 mW全固态连续单频可调谐1542 nm激光器[J]. 量子光学学报, 2019, 25(1): 94-99.

    ZHU H R, YAN L H, LI Y J, et al. 420 mW all solid state conti-nuous wave single frequency tunable laser at 1542 nm[J]. Acta Si-nica Quantum Optica, 2019, 25(1): 94-99(in Chinese).
    [20]
    姚子健, 李渊骥, 宋政, 等. 基于全固态单向行波环形腔的连续波单频1.5 μm激光器[J]. 中国激光, 2021, 48(5): 0501010.

    YAO Z J, LI Y J, SONG Zh, et al. Continuous-wave single-frequency 1.5 μm laser based-on all-solid-state unidirectional traveling-wave ring cavity[J]. Chinese Journal of Lasers, 2021, 48(5): 0501010(in Chinese).
    [21]
    YAO Z J, LI Y J, LIU K L, et al. Wavelength tuning of solid-state continuous-wave single frequency 1.5 μm laser by manipulating net gain spectra[J]. Optics Express, 2022, 30(24): 44085.
    [22]
    赵凯华, 陈熙谋. 新概念物理教程电磁学[M]. 第3版. 北京: 高等教育出版社, 2011: 244-258.

    ZHAO K H, CHEN X M. New concept physics tutorial electromagnetism[M]. 3rd ed. Beijing: Higher Education Press, 2011: 244-258(in Chinese).
    [23]
    LI Y J, FENG J X, LI P, et al. 400 mW low noise continuous-wave single-frequency Er, Yb : YAl3(BO3)4 laser at 1.55 μm[J]. Optics Express, 2013, 21(5): 6082-6090.

Catalog

    Article views (3) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return