Advanced Search
ZHAO Zhe, ZHOU Weilong, LONG Huan, ZHOU Hong, LIANG Denghui, LIU Juntao, LI Xiaobao. LiDAR point cloud radius filtering based on genetic algorithm[J]. LASER TECHNOLOGY, 2025, 49(2): 210-215. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.008
Citation: ZHAO Zhe, ZHOU Weilong, LONG Huan, ZHOU Hong, LIANG Denghui, LIU Juntao, LI Xiaobao. LiDAR point cloud radius filtering based on genetic algorithm[J]. LASER TECHNOLOGY, 2025, 49(2): 210-215. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.008

LiDAR point cloud radius filtering based on genetic algorithm

More Information
  • Received Date: March 04, 2024
  • Revised Date: December 03, 2024
  • Point cloud noise reduction is crucial to the accuracy of light detection and ranging(LiDAR) imaging systems. In order to reduce the noise caused by receiver, multipath effect, external interference and atmospheric disturbances, a radius filtering method based on genetic algorithm was used for noise reduction, which optimized the key parameters of radius filtering (filtering radius and nearest-neighbor thresholds) by genetic algorithm. Validation in simple and complex scenes show that, the algorithm maintains denoising accuracy and point retention in simple scenes while slightly improving noise recall. The noise recall in complex scenes is improved by about 21% over traditional radius filtering and about 16% over statistical filtering, which is useful for point cloud radius filtering. The radius filtering based on genetic algorithm provides a novel and effective method for LiDAR data processing, which is valuable for improving the quality of LiDAR imaging.

  • [1]
    DIGNE J, FRANCHIS C D. The bilateral filter for point clouds[J]. Image Processing on Line, 2017, 7: 278-287. DOI: 10.5201/ipol.2017.179
    [2]
    CARRILHO A C, GALO M, SANTOS R C. Statistical outlier detection method for airborne lidar data[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. New York, USA: International Society for Photogrammetry and Remote Sensing, 2018: 87-92.
    [3]
    CHARRON N, PHILLIPS S, WASLANDER S L. De-noising of lidar point clouds corrupted by snowfall[C]//15th Conference on Computer and Robot Vision. New York, USA: IEEE Press, 2018: 254-261.
    [4]
    JIN Y X, YUAN X T, WANG Zh, et al. Filtering processing of LiDAR point cloud data[C]//5th IOP Conference Series: Earth and Environmental Science. New York, USA: IEEE Press, 2021: 012125.
    [5]
    王云云, 唐菲菲, 王章朋, 等. 植被茂密地区点云双重滤波方法研究[J]. 激光技术, 2022, 46(2): 233-238.

    WANG Y Y, TANG F F, WNAG Zh P, et al. Research on dual filter-ing method for point cloud in dense vegetation areas[J]. Laser Technology, 2022, 46(2): 233-238(in Chinese).
    [6]
    柳斌, 李雪梅. 一种基于激光雷达点云的自适应双半径滤波算法[J]. 兵工学报, 2023, 44(9): 2768-2777.

    LIU B, LI X M. An adaptive dual radius filtering algorithm based on LiDAR point cloud[J]. Acta Armamentarii, 2023, 44(9): 2768-2777(in Chinese).
    [7]
    WEN G Q, ZHANG H X, GUAN Zh W, et al. Bilateral filter denoising of LiDAR point cloud data in automatic driving scene[J]. Infrared Physics & Technology, 2023, 131: 104724. DOI: 10.1016/j.infrared.2023.104724
    [8]
    李婕, 李青清, 李礼, 等. 基于深度学习的机载点云屋顶平面提取算法[J]. 激光技术, 2024, 48(5): 628-636.

    LI J, LI Q Q, LI L, et al. An airborne point cloud roof plane extraction algorithm based on deep learning[J]. Laser Technology, 2024, 48(5): 628-636.
    [9]
    郑帅锋, 王山东, 张陈意, 等. 基于点云特征的城市道路标识线提取与分类[J]. 激光技术, 2024, 48(1): 27-33.

    ZHENG Sh F, WANG Sh D, ZHANG Ch Y, et al. Extraction and classification of urban road marking lines based on point cloud features[J]. Laser Technology, 2024, 48(1): 27-33(in Chinese).
    [10]
    陶志勇, 李衡, 豆淼森, 等. 融合多分辨率特征的点云分类与分割网络[J]. 光电工程, 2023, 50(10): 230166.

    TAO Zh Y, LI H, DOU M S, et al. Multi-resolution feature fusion for point cloud classification and segmentation network[J]. Opto-Electronic Engineering, 2023, 50(10): 230166(in Chinese).
    [11]
    MATTEI E, CASTRODAD A. Point cloud denoising via moving RPCA[J]. Computer Graphics Forum, 2017, 36(8): 123-137. DOI: 10.1111/cgf.13068
    [12]
    KIM J W, CHO J H. Delaunay triangulation-based spatial clustering technique for enhanced adjacent boundary detection and segmentation of LiDAR 3D point clouds[J]. Sensors, 2019, 19(18): 3926. DOI: 10.3390/s19183926
    [13]
    刘国栋, 刘佳, 刘浪. 一种基于机载LiDAR数据的山区道路提取方法[J]. 激光技术, 2022, 46(4): 466-473. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.005

    LIU G D, LIU J, LIU L. A method for extracting mountainous road based on airborne LiDAR data[J]. Laser Technology, 2022, 46(4): 466-473(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.005
    [14]
    HUANG J P, YAN Q X, YOU H T, et al. Particle swarm optimization-based noise filtering algorithm for photon cloud data in forest area[J]. Remote Sensing, 2019, 11(8): 980. DOI: 10.3390/rs11080980
    [15]
    REN J Q, BAO K, ZHANG G H, et al. LANDMARC indoor positioning algorithm based on density-based spatial clustering of applications with noise-genetic algorithm-radial basis function neural network[J]. International Journal of Distributed Sensor Networks, 2020, 16(2): 1550147720907831. http://www.xueshufan.com/publication/3008106549
    [16]
    LI Y Y, WANG J, LI B, et al. An adaptive filtering algorithm of multilevel resolution point cloud[J]. Survey Review, 2021, 53(379): 300-311. DOI: 10.1080/00396265.2020.1755163
    [17]
    魏硕, 赵楠翔, 李敏乐, 等. 结合改进DBSCAN和统计滤波的单光子去噪算法[J]. 激光技术, 2021, 45(5): 601-606.

    WEI Sh, ZHAO N X, LI M L, et al. A single photon denoising algorithm combining improved DBSCAN and statistical filtering[J]. Laser Technology, 2021, 45(5): 601-606(in Chinese).
    [18]
    DUAN Y, YANG Ch Ch, LI H B. Low-complexity adaptive radius outlier removal filter based on PCA for lidar point cloud denoising[J]. Applied Optics, 2021, 60(20): E1-E7. DOI: 10.1364/AO.416341
    [19]
    CHENG D Y, ZHAO D J, ZHANG J Ch, et al. PCA-based denoising algorithm for outdoor lidar point cloud data[J]. Sensors, 2021, 21(11): 3703. DOI: 10.3390/s21113703
    [20]
    李仁忠, 杨曼, 冉媛, 等. 基于方法库的点云去噪与精简算法[J]. 激光与光电子学进展, 2018, 55(1): 011008.

    LI R Zh, YANG M, RAN Y, et al. Point cloud denoising and simplification algorithm gate based on method library[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011008(in Chinese).
    [21]
    郭昌龙, 夏振平, 李超超, 等. 结合改进半径滤波和局部平面拟合的点云去噪算法[J]. 激光与光电子学进展, 2024, 61(12): 1215003.

    GUO Ch L, XIA Zh P, LI Ch Ch, et al. A point cloud denoising algorithm combining improved radius filtering and local plane fitting[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1215003 (in Chinese).
    [22]
    MARC L, GREG T. The stanford 3D scanning repository[DB/OL]. (2023-04-25). https://graphics.stanford.edu/data/3Dscanrep/ .
    [23]
    ÖZCAN A H, VNSALAN C. LiDAR data filtering and DTM generation using empirical mode decomposition[DB/OL]. (2017-04-29). https://github.com/himmetozcan/EMD_Lidar .
    [24]
    周圣涛. 基于多核的DSP的点云数据快速降噪技术研究[D]. 长春: 长春理工大学, 2020: 48-49.

    ZHOU Sh T. Research on fast noise reduction technology for point cloud data based on multi core DSP[D]. Changchun: Changchun University of Science and Technology, 2020: 48-49(in Chinese).

Catalog

    Article views (5) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return