Advanced Search
YANG Chenglin, CHEN Haiyong, YUE Xuezhi, LI Huayao, DENG Liqi, GUO Dongge, WANG Haichao, LIU Huan. Research on VOC leakage area identification based on target detection[J]. LASER TECHNOLOGY, 2024, 48(6): 922-930. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.019
Citation: YANG Chenglin, CHEN Haiyong, YUE Xuezhi, LI Huayao, DENG Liqi, GUO Dongge, WANG Haichao, LIU Huan. Research on VOC leakage area identification based on target detection[J]. LASER TECHNOLOGY, 2024, 48(6): 922-930. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.019

Research on VOC leakage area identification based on target detection

More Information
  • Received Date: January 11, 2024
  • Revised Date: March 13, 2024
  • Published Date: November 24, 2024
  • To solve the problem of high misidentification rate, high missed detection rate, low algorithm execution efficiency, and poor model generalization ability in the recognition of volatile organic compound (VOC) leakage area of infrared gas imager, a VOC leakage area recognition method based on motion feature enhancement was proposed. The video stability threshold was determined by using the statistical method of projection change rate of video sequence, and the moving background and moving foreground were extracted under stable state. Optimized linear stretching was used to perform feature enhancement and outlier filtering on the moving foreground. The motion foreground was fused with the original frame, and VOC leakage area identification was performed using the target detection algorithm. Through the method of model pre-training and transfer learning, the smoke dataset and a small amount of VOC leakage dataset were used to train the recognition model, and the model was transferred to the RK3588S embedded development board for execution efficiency test. Experimental results show that the mean average precision of the proposed algorithm is 0.88 when the intersection over union ratio is 0.5, and the mean average precision is 0.51 when the intersection over union ratio ranges from 0.5 to 0.95. The average recognition time of a single frame is 49 ms, which has high recognition accuracy and recognition efficiency, and can meet the requirements of real-time monitoring. The algorithm in this article can maintain stable model performance and has certain anti-interference capabilities providing some reference for VOC leak identification.
  • [1]
    YAN M Q, ZHU H K, LUO H N, et al. Daily ex1posure to environmental volatile organic compounds triggers oxidative damage: Evidence from a large-scale survey in China[J]. Environmental Science & Technology, 2023, 57(49): 20501-20509.
    [2]
    CHOI Y H, KIM H J, SOHN J R, et al. Occupational exposure to VOC and carbonyl compounds in beauty salons and health risks associated with it in South Korea[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114837. DOI: 10.1016/j.ecoenv.2023.114837
    [3]
    HUANGE Y X, D K, XIONG Y, et al. One-third of global population at cancer risk due to elevated volatile organic compounds levels[J/OL]. Research Square: (2023-09)[2024-01-11]. https://doi.org/10.21203/rs.3.rs-3320416/v1.
    [4]
    NARANJO E, BALIGA S, BERNASCOLLE P F, et al. IR gas imaging in an industrial setting[J]. Proceedings of the SPIE, 2010, 7661: 7661K.
    [5]
    RANGEL J, SCHMOLL R, KROLL A. Catadioptric stereo optical gas imaging system for scene flow computation of gas structures[J]. IEEE Sensors Journal, 2021, 21(5): 6811-6820. DOI: 10.1109/JSEN.2020.3042116
    [6]
    HUSEIN A M, CALVIN, HALIM D, et al. Motion detect application with frame difference method on a surveillance camera[J]. Journal of Physics: Conference Series, 2019, 12309(1): 012017.
    [7]
    WANG L M, TONG Zh, JI B, et al. Temporal difference networks for efficient action recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 1895-1904. .
    [8]
    XIN Y H, HOU J, DONG L M, et al. A self-adaptive optical flow method for the moving object detection in the video sequences[J]. Optik—International Journal for Light and Electron Optics, 2014, 125(19): 5690-5694. DOI: 10.1016/j.ijleo.2014.06.092
    [9]
    WANG X, FENG L I, XIN L, et al. Moving targets detection for sa-tellite-based surveillance video[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE Press, 2019: 5492-5495.
    [10]
    HE W, LI J X, QI Q, et al. SIM-MFR: Spatial interactions mechanisms based multi-feature representation for background modeling[J]. Journal of Visual Communication and Image Representation, 2022, 88: 103622. DOI: 10.1016/j.jvcir.2022.103622
    [11]
    王建平, 李俊山, 杨亚威, 等. 基于红外成像的乙烯气体泄漏检测[J]. 液晶与显示, 2014, 29(4): 623-628.

    WANG J P, LI J Sh, YANG Y W, et al. Ethylene gas leakage detection based on infrared imaging[J]. Journal of Liquid Crystals and Displays, 2014, 29(4): 623-628(in Chinese).
    [12]
    刘路民根, 张耀宗, 栾琳, et al. 一种基于形状的红外图像泄漏气体检测方法[J]. 应用光学, 2019, 40(3): 468-472.

    LIU L M G, ZHANG Y Z, LUAN L, et al. A shape-based infrared image gas leakage detection method[J]. Journal of Applied Optics, 2019, 40(3): 468-472(in Chinese).
    [13]
    HONG Sh Zh, YING H, YU H W, et al. A VOC gas detection algorithm based on infrared thermal imaging[C]//2019 Chinese Control and Decision Conference (CCDC). Nanchang, China: IEEE Press, 2019: 329-334.
    [14]
    BADAWI D, PAN H Y, CETIN S C C, et al. Computationally efficient spatio-temporal dynamic texture recognition for volatile organic compound (VOC) leakage detection in industrial plants[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(4): 676-687. DOI: 10.1109/JSTSP.2020.2976555
    [15]
    XU Y, DONG J X, ZHANG B, et al. Background modeling methods in video analysis: A review and comparative evaluation[J]. CAAI Transactions on Intelligence Technology, 2016, 1(1): 43-60.
    [16]
    ZHENG Y, FAN L Zh. Moving object detection based on running average background and temporal difference[C]//2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering. Hangzhou, China: IEEE Press, 2010: 270-272.
    [17]
    MEGHANA R K, CHITKARA Y, MOHANA A. Background-mo-delling techniques for foreground detection and tracking using Gaussian mixture model[C]//2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). Erode, India: IEEE Press, 2019: 1129-1134.
    [18]
    ZHU M Zh, WANGE H B. Fast detection of moving object based on improved frame-difference method[C]//2017 6th International Conference on Computer Science and Network Technology (ICCSNT). Dalian, China: IEEE Press, 2017: 299-303.
    [19]
    费宬, 康佳龙, 刘俊良, 等. 基于FPGA的短波红外图像灰度级拉伸算法实现[J]. 太赫兹科学与电子信息学报, 2022, 20(7): 713-717.

    FEI F, KANG J L, LIU J L, et al. Implementation of short-wave infrared image gray-level stretching algorithm based on FPGA[J]. Journal of Terahertz Science and Electronic Information, 2022, 20(7): 713-717(in Chinese).
    [20]
    周永康, 朱尤攀, 曾邦泽, 等. 宽动态红外图像增强算法综述[J]. 激光技术, 2018, 42(5): 718-726. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.025

    ZHOU Y K, ZHU Y P, ZENG B Z, et al. A review of wide dynamic range infrared image enhancement algorithms[J]. Laser Technology, 2018, 42(5): 718-726(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2018.05.025
    [21]
    魏艳平. 线性变换与局部均衡融合的红外图像增强[J]. 激光技术, 2024, 48(5): 705-710. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.014

    WEI Y P. Infrared image enhancement using linear transformation and local equalization fusion[J]. Laser Technology, 2024, 48(5): 705-710(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2024.05.014
    [22]
    WANG Y C, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-free bies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 7464-7475.
    [23]
    CHENG Y H, YIN J L, CHEN B H, et al. Smoke 100k: A database for smoke detection[C]//2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). Osaka, Japan: IEEE Press, 2019: 596-597.
  • Related Articles

    [1]WANG Lifu, WANG Zhibin, LI Xiao, CHEN Youhua, ZHANG Rui, ZHANG Pengfei. Measurement of the polarization Stokes parameters based on photoelastic-modulation and its error analysis[J]. LASER TECHNOLOGY, 2014, 38(2): 255-259. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.023
    [2]FAN Su, HOU Tao. 基于ANSYS的圆截面激光晶体的热变形分析[J]. LASER TECHNOLOGY, 2012, 36(2): 280-284. DOI: 10.3969/j.issn.1001-3806.2012.02.036
    [3]HE Xin, ZHANG Bin, ZHOU Kun. 基于虚拟仪器的激光光斑自动采集与分析系统[J]. LASER TECHNOLOGY, 2012, 36(2): 238-242. DOI: 10.3969/j.issn.1001-3806.2012.02.025
    [4]WU Zhi-hui, CUI Xiang-rong, HUANG Dai-zheng, CHEN Chao-wang, MO Hua. 脐带血与先天性心脏病患儿红细胞的光谱分析[J]. LASER TECHNOLOGY, 2012, 36(2): 233-237. DOI: 10.3969/j.issn.1001-3806.2012.02.024
    [5]SONG Wei, WANG Ya-fu, SHAO Li. 激光致盲干扰效能分析研究[J]. LASER TECHNOLOGY, 2012, 36(2): 228-229,250. DOI: 10.3969/j.issn.1001-3806.2012.02.022
    [6]HAN Cai-qin, LIU Ying, WU Bin, YANG Yang, LUO Xiao-sen, NI Xiao-wu. Analysis of acetic acid-water solution structure characteristics by fluorescence parameters[J]. LASER TECHNOLOGY, 2010, 34(5): 640-642,646. DOI: 10.3969/j.issn.1001-3806.2010.O5.017
    [7]ZHAN Yi. Theoretical analysis of optimum parameters for woodpile-type photonic crystals[J]. LASER TECHNOLOGY, 2009, 33(4): 391-392,396. DOI: 10.3969/j.issn.1001-3806.2009.04.016
    [8]He Yunfeng, Du Dong, Liu Ying, Sui Bo, Xiong Lijuan. Parametric analysis of pulsed Nd:YAG laser texturing process[J]. LASER TECHNOLOGY, 2003, 27(1): 8-10,13.
    [9]Zhang Kejun, Lin Xiaodong, Tang Yonglin, Chen Jianguo, Li Dayi. Analysis of propagation of Gaussian beams in Keer medium with potential function[J]. LASER TECHNOLOGY, 2001, 25(3): 229-232.
    [10]Ji Xuanmang, Wang Jinlai, Liu Jinsong, An Yuying. Measuring principle of materials parameters of photorefractive crystal in intermediate regime[J]. LASER TECHNOLOGY, 1999, 23(3): 165-167.
  • Cited by

    Periodical cited type(2)

    1. 安奥博,陈茂霖,赵立都,马成林,刘祥江. 长测距地基点云密度自适应平面分割算法. 激光技术. 2023(05): 606-612 . 本站查看
    2. 陶志勇,李衡,豆淼森,林森. 融合多分辨率特征的点云分类与分割网络. 光电工程. 2023(10): 56-67 .

    Other cited types(4)

Catalog

    Article views (34) PDF downloads (4) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return