Advanced Search
DONG Zhengqiong, HUANG Xianwen, XU Ren, ZHU Renlong, ZHOU Xiangdong, NIE Lei. Measurement method for surface topography based on quadriwave lateral shearing interferometry[J]. LASER TECHNOLOGY, 2024, 48(6): 906-912. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.017
Citation: DONG Zhengqiong, HUANG Xianwen, XU Ren, ZHU Renlong, ZHOU Xiangdong, NIE Lei. Measurement method for surface topography based on quadriwave lateral shearing interferometry[J]. LASER TECHNOLOGY, 2024, 48(6): 906-912. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.017

Measurement method for surface topography based on quadriwave lateral shearing interferometry

More Information
  • Received Date: September 10, 2023
  • Revised Date: December 07, 2023
  • Published Date: November 24, 2024
  • In order to solve the problems of high processing difficulty and limited spectral application range of specific spectra device in traditional quadriwave lateral shearing interferometry system, dividing incident light beam into four beams of lateral shearing coherent wavelets was proposed by using a spatial light modulator instead of a spectro grating. The diffraction efficiency of wavelets was adjusted flexibly by adjusting the refractive index of grating to adapt to the illumination light source, and the optical path difference distribution reflecting the height information and refractive index of the sample was reconstructed according to the interference effect between two wavelets, so as to realize accurate measurement of surface topography in a wide spectral and large dimensions range. In this study, the effect of incident light wavelength on the reconstruction accuracy of optical path difference was investigated by combining the Fourier transform method, and a wide spectrum quadriwave lateral shearing interferometry system from the visible to near infrared was built using a spatial light modulator. The results show that the system measured the etching depth of a standard quartz sample at 209.39 nm±1.72 nm, which is basically consistent with its nominal value of 210.83 nm±2.39 nm and the measurement value of 212.92 nm±1.35 nm by white light interferometer, which verifies the effectiveness of the surface topography measurement method proposed. This study can provide a theoretical reference for the extended application of quadriwave lateral shearing interferometry in the field of surface topography measurement.
  • [1]
    刘佳敏, 赵杭, 吴启哲, 等. 先进节点图案化晶圆缺陷检测技术[J]. 激光与光电子学进展, 2023, 60(3): 0312003.

    LIU J M, ZHAO H, WU Q Zh, et al. Patterned wafer defect inspection at advanced technology nodes[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312003(in Chinese).
    [2]
    金川. 基于数字全息的微纳结构测量及其关键技术研究[D]. 北京: 中国科学院大学, 2022.

    JIN Ch. Research on micro-nano structure measurement based on digital holography and its key technologies[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2022(in Chinese).
    [3]
    韩志国, 李锁印, 冯亚南, 等. 接触式轮廓仪探针状态检查图形样块的研制[J]. 微纳电子技术, 2019, 56(9): 761-765.

    HAN Zh G, LI S Y, FENG Y N, et al. Development of the inspection pattern specimen for the contact profiler stylus state[J]. Micronanoelectronic Technology, 2019, 56(9): 761-765(in Chinese).
    [4]
    HUI F, LANZA M. Scanning probe microscopy for advanced nanoelectronics[J]. Nature Electronics, 2019, 2(6): 221-229. DOI: 10.1038/s41928-019-0264-8
    [5]
    CHEN J L, YU Q H, GE B, et al. A phase difference measurement method for integrated optical interferometric imagers[J]. Remote Sensing, 2023, 15(8): 2194. DOI: 10.3390/rs15082194
    [6]
    YUAN X, XUE Y G, MIN J W, et al. High-precision gaseous flame temperature field measurement based on quadriwave-lateral shearing interferometry[J]. Optics and Lasers in Engineering, 2023, 162: 10730.
    [7]
    KHADIR S, ANDRÉN D, VERRE R, et al. Metasurface optical characterization using quadriwave lateral shearing interferometry[J]. ACS Photonics, 2021, 8(2): 603-613. DOI: 10.1021/acsphotonics.0c01707
    [8]
    刘克, 张孝天, 钟慧, 等. 四波前横向剪切干涉仪的关键技术研究[J]. 光学学报, 2023, 45(15): 1512001.

    LIU K, ZHANG X T, ZHONG H, et al. Key technologies of quadri-Wave lateral shearing interferometer[J]. Acta Optica Sinica, 2023, 43(15): 1512001(in Chinese).
    [9]
    位文广, 韩俊鹤, 付玉洲. 一种两步相移数字全息的设计与实验验证[J]. 激光技术, 2020, 44(1): 86-90. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.015

    WEI W G, HAN J H, FU Y Zh. Design and verification of two-step phase-shifted digital holography[J]. Laser Technology, 2020, 44(1): 86-90(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.01.015
    [10]
    ZHONG Zh, WANG Ch, LIU L, et al. Diffraction phase microscopy using a defocus grating[J]. Journal of Modern Optics, 2022, 69(4): 219-224. DOI: 10.1080/09500340.2021.2024289
    [11]
    朱文华. 多波段激光波前瞬态干涉关键技术研究[D]. 南京: 南京理工大学, 2019.

    ZHU W H. Research on transient interferometric techniques of laser wavefront at multiple wavelengths[D]. Nanjing: Nanjing University of Science and Technology, 2019(in Chinese).
    [12]
    崔博川. 基于衍射光学元件的多波前横向剪切干涉方法研究[D]. 北京: 中国科学院大学, 2018.

    CUI B Ch. Research on multiwave lateral shearing interferometry based on diffractive optical elements[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2018(in Chinese).
    [13]
    DAI F, TANG F, WANG X, et al. Generalized zonal wavefront reconstruction for high spatial resolution in lateral shearing interferometry[J]. Journal of the Optical Society of America, 2012, A29(9): 2038-2047.
    [14]
    LI J, TANG F, WANG X Zh, et al. Wavefront reconstruction for lateral shearing interferometry based on difference polynomial fitting[J]. Journal of Optics, 2015, 17(6): 065401. DOI: 10.1088/2040-8978/17/6/065401
    [15]
    PRIMOT J, GUéRINEAU N. Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard[J]. Applied Optics, 2000, 39(31): 5715-5720. DOI: 10.1364/AO.39.005715
    [16]
    LING T, LIU D, YUE X M, et al. Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating[J]. Optics Letters, 2015, 40(10): 2245-2248. DOI: 10.1364/OL.40.002245
    [17]
    方波. 基于位相光栅的四波横向剪切干涉法波前检测技术研究[D]. 南京: 南京理工大学, 2014.

    FANG B. Wavefront measurement with four-wave lateral shearing interferometry based on phase grating[D]. Nanjing: Nanjing University of Science and Technology, 2014(in Chinese).
    [18]
    宋金伟, 闵俊伟, 袁勋, 等. 基于二维朗奇相位光栅的四波横向剪切干涉定量相位成像[J]. 光子学报, 2022, 51(11): 1118001.

    SONG J W, MIN J W, YUAN X, et al. Quadriwave lateral shearing interferometry quantitative phase imaging based on 2D ronchi phase grating[J]. Acta Photonica Sinica, 2022, 51(11): 1118001(in Chinese).
    [19]
    ZHAO Z X, ZHUANG Y Y, XIAO Zh X, et al. Characterizing a liquid crystal spatial light modulator at oblique incidence angles using the self-interference method[J]. Chinese Optics Letters, 2018, 16(9): 090701.
    [20]
    KOTTLER C, DAVID C, PFEIFFER F, et al. A two-directional approach for grating based differential phase contrast imaging using hard X-rays[J]. Optics Express, 2007, 15(3): 1175-1181.
    [21]
    翟中生, 黄缘胜, 李沁洋, 等. 基于空间光调制器的正交相位光栅衍射特性[J]. 光学学报, 2022, 42(16): 1605002.

    ZHAI Zh Sh, HUANG Y Sh, LI Q Y, et al. Diffraction characteristics of orthogonal phase grating based on spatial light modulator[J]. Acta Optica Sinica, 2022, 42(16): 1605002(in Chinese).
    [22]
    BAFFOU G. Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): Principle, terminology, algorithm and grating shadow description[J]. Journal of Physics, 2021, D54(29): 294002.
  • Cited by

    Periodical cited type(2)

    1. 钱心磊, 孔勇, 杜彤耀, 徐果, 许雪莹. 相位敏感光时域反射仪的振动全程敏感研究. 激光技术. 2019(05): 18-23 . 本站查看
    2. 和亮. 基于级联马赫-曾德尔调制器的太赫兹通信系统. 激光技术. 2016(06): 787-790 . 本站查看

    Other cited types(0)

Catalog

    Article views (16) PDF downloads (8) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return