Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 48 Issue 6
Nov.  2024
Article Contents
Turn off MathJax

Citation:

Research progress on polariton lasing in 2-D materials

  • Corresponding author: WANG Wei, w.wang@scu.edu.cn
  • Received Date: 2024-01-08
    Accepted Date: 2024-03-15
  • Polariton lasing is a new type of lasing that realizes ultra-low threshold lasing with the coherence of Bose-Einstein condensation(BEC) of exciton-polariton in semiconductors. Unlike conventional 3-D organic and inorganic materials, 2-D transition metal dichalcogenides and 2-D perovskite show great potential in the further development of polariton lasing due to their high exciton binding energies, high oscillator strengths, direct band gaps, van der Waals properties, and valley polarization properties, which are conducive to the realization of strong coupling of exciton and cavity modes and BEC of exciton-polariton. In this review, the principle and progress of polariton lasing in 2-D transition metal chalcogenides and perovskite were mainly focused on, starting with development of strong coupling between exciton and cavity modes. Then, the modulation of the coherence of polariton, the realization of the BEC and polariton lasing was introduced. Finally, an outlook will be given on the future development of polariton lasing in 2-D materials.
  • 加载中
  • [1]

    SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17(6): 3982-3988. doi: 10.1021/acs.nanolett.7b01956
    [2]

    RAM R J, PAU S, YAMAMOTO Y, et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers[J]. Physical Review, 1996, A53(6): 4250-4253.
    [3]

    CIUTI C, BAUMBERG J J, TEJEDOR C, et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J]. Physical Review, 2002, B66(8): 85304.
    [4]

    MALPUECH G, DI CARLO A, KAVOKIN A, et al. Room-temperature polariton lasers based on GaN microcavities[J]. Applied Physics Letters, 2002, 81(3): 412-414. doi: 10.1063/1.1494126
    [5]

    KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 2006, 443(7110): 409-414. doi: 10.1038/nature05131
    [6]

    KUMAR N. Bose-Einstein condensation in a dilute atomic vapour[J]. Current Science (Bangalore), 1995, 69(6): 492-493.
    [7]

    DENG H, WEIHS G, SNOKE D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences, 2003, 100(26): 15318-15323. doi: 10.1073/pnas.2634328100
    [8]

    HAUG H, YAMAMOTO Y, DENG H. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489-1537. doi: 10.1103/RevModPhys.82.1489
    [9]

    LIU X, GALFSKY T, SUN Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34. doi: 10.1038/nphoton.2014.304
    [10]

    HEO J, JAHANGIR S, XIAO B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Lett, 2013, 13(6): 2376-2380. doi: 10.1021/nl400060j
    [11]

    DAS A, HEO J, JANKOWSKI M, et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 2011, 107(6): 66405. doi: 10.1103/PhysRevLett.107.066405
    [12]

    WEI M, RUSECKAS A, MAI V T N, et al. Low threshold room temperature polariton lasing from fluorene-based oligomers[J]. Laser & Photonics Reviews, 2021, 15(8): 2100028.
    [13]

    FORREST S R, KÉNA-COHEN S. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 2010, 4(6): 371-375. doi: 10.1038/nphoton.2010.86
    [14]

    LA ROCCA G C. Polariton lasing[J]. Nature Photonics, 2010, 4(6): 343-345. doi: 10.1038/nphoton.2010.131
    [15]

    TANG J, ZHANG J, LV Y, et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nature Communications, 2021, 12(1): 1-8. doi: 10.1038/s41467-020-20314-w
    [16]

    FRENKEL J. On the transformation of light into heat in solids. Ⅰ[J]. Physical Review, 1931, 37(1): 17-44. doi: 10.1103/PhysRev.37.17
    [17]

    WEI M, RAJENDRAN S K, OHADI H, et al. Low-threshold polariton lasing in a highly disordered conjugated polymer[J]. Optica, 2019, 6(9): 1124-1129. doi: 10.1364/OPTICA.6.001124
    [18]

    MOILANEN A J, ARNARDóTTIR K B, KEELING J, et al. Mode switching dynamics in organic polariton lasing[J]. Physical Review, 2022, B106(19): 195403.
    [19]

    GHOSH P, YU D, HU T, et al. Strong exciton-photon coupling and polariton lasing in GaN microrod[J]. Journal of Materials Science, 2019, 54(11): 8472-8481. doi: 10.1007/s10853-019-03493-w
    [20]

    CHRISTOPOULOS S, VON HOGERSTHAL G B, GRUNDY A J, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. doi: 10.1103/PhysRevLett.98.126405
    [21]

    ZHAO D, LIU W, ZHU G, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire[J]. Nano Energy, 2020, 78: 105202. doi: 10.1016/j.nanoen.2020.105202
    [22]

    MASHARIN M A, SAMUSEV A K, BOGDANOV A A, et al. Room-temperature exceptional-point-driven polariton lasing from perovskite metasurface[J]. Advanced Functional Materials, 2023, 33(22): 2215007. doi: 10.1002/adfm.202215007
    [23]

    DAI S, MA Q, LIU M K, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 2015, 10(8): 682-686. doi: 10.1038/nnano.2015.131
    [24]

    BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. doi: 10.1021/nl400601c
    [25]

    WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. doi: 10.1038/nphoton.2013.241
    [26]

    CHEN J, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi: 10.1038/nature11254
    [27]

    CHERNIKOV A, ZHANG X, RIGOSI A, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Physical Review, 2014, B90(20): 205422.
    [28]

    GU J, CHAKRABORTY B, KHATONIAR M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 2019, 14(11): 1024-1028. doi: 10.1038/s41565-019-0543-6
    [29]

    XIE P, LIANG Z, LI Z, et al. Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator[J]. Physical Review, 2020, B101(4): 45403.
    [30]

    WANG S, LE-VAN Q, VAIANELLA F, et al. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances[J]. ACS Photonics, 2019, 6(2): 286-293. doi: 10.1021/acsphotonics.8b01459
    [31]

    HU T, WANG Y, WU L, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons[J]. Applied Physics Letters, 2017, 110(5): 51101. doi: 10.1063/1.4974901
    [32]

    MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226. doi: 10.1038/nphoton.2015.282
    [33]

    YE Z, CAO T, O BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. doi: 10.1038/nature13734
    [34]

    BERKELBACH T C, HILL H M, RIGOSI A, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 76802. doi: 10.1103/PhysRevLett.113.076802
    [35]

    ZHENG J, BARTON R A, ENGLUND D. Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors[J]. ACS Photonics, 2014, 1(9): 768-774. doi: 10.1021/ph500107b
    [36]

    DUFFERWIEL S, SCHWARZ S, WITHERS F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6(1): 1-7.
    [37]

    SCHWARZ S, DUFFERWIEL S, WALKER P M, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities[J]. Nano Letters, 2014, 14(12): 7003-7008. doi: 10.1021/nl503312x
    [38]

    REED J C, ZHU A Y, ZHU H, et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter[J]. Nano Letters, 2015, 15(3): 1967-1971. doi: 10.1021/nl5048303
    [39]

    ZHANG L, WU F, HOU S, et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity[J]. Nature, 2021, 591(7848): 61-65. doi: 10.1038/s41586-021-03228-5
    [40]

    FLATTEN L C, HE Z, COLES D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6: 33134. doi: 10.1038/srep33134
    [41]

    WURDACK M, LUNDT N, KLAAS M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer[J]. Nature Communications, 2017, 8: 259. doi: 10.1038/s41467-017-00155-w
    [42]

    WANG S, LI S, CHERVY T, et al. Coherent coupling of WS2 mo-nolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 2016, 16(7): 4368-4374. doi: 10.1021/acs.nanolett.6b01475
    [43]

    GIBBS H M, JAHNKE F, KIRA M, et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 1999, 71(5): 1591-1639. doi: 10.1103/RevModPhys.71.1591
    [44]

    OROSZ L, KAMOUN O, BOUCHOULE S, et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity[J]. Phy-sical Review Letters, 2013, 110(19): 196406. doi: 10.1103/PhysRevLett.110.196406
    [45]

    RÉVERET F, MALLET E, DISSEIX P, et al. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO[J]. Physical Review, 2016, B93(11): 115205.
    [46]

    DASKALAKIS K S, MAIER S A, MURRAY R, et al. Nonlinear interactions in an organic polariton condensate[J]. Nature Materials, 2014, 13(3): 271-278. doi: 10.1038/nmat3874
    [47]

    DENG H, WEIHS G, SNOKE D, et al. Condensation of semiconductor microcavity exciton polaritons[J]. Science, 2002, 298(5591): 199-202. doi: 10.1126/science.1074464
    [48]

    von HÖGERSTHAL G B H, GRUNDY A J D, LAGOUDAKIS P G, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. doi: 10.1103/PhysRevLett.98.126405
    [49]

    ZHANG S, CHEN J, SHI J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity[J]. ACS Photonics, 2020, 7(2): 327-337. doi: 10.1021/acsphotonics.9b01240
    [50]

    LIU X, BAO W, LI Q, et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 2017, 119(2): 27403. doi: 10.1103/PhysRevLett.119.027403
    [51]

    WALDHERR M, LUNDT N, KLAAS M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity[J]. Nature Communications, 2018, 9(1): 1-6. doi: 10.1038/s41467-017-02088-w
    [52]

    ANTON-SOLANAS C, WALDHERR M, KLAAS M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal[J]. Nature Materials, 2021, 20(9): 1233-1239. doi: 10.1038/s41563-021-01000-8
    [53]

    ZHAO J, SU R, FIERAMOSCA A, et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 2021, 21(7): 3331-3339. doi: 10.1021/acs.nanolett.1c01162
    [54]

    CHEN X, ALNATAH H, MAO D, et al. Bose condensation of upper-branch exciton-polaritons in a transferable microcavity[J]. Nano Letters, 2023, 23(20): 9538-9546. doi: 10.1021/acs.nanolett.3c03123
    [55]

    BLANCON J C, STIER A V, TSAI H, et al. Scaling law for exci-tons in 2D perovskite quantum wells[J]. Nature Communications, 2018, 9(1): 1-10. doi: 10.1038/s41467-017-02088-w
    [56]

    BLANCON J, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic-inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969-985. doi: 10.1038/s41565-020-00811-1
    [57]

    FIERAMOSCA A, POLIMENO L, ARDIZZONE V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature[J]. Science Advances, 5(5): eaav9967. doi: 10.1126/sciadv.aav9967
    [58]

    ZHANG L, LIANG W. How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers[J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1517-1523. doi: 10.1021/acs.jpclett.6b03005
    [59]

    HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Letters, 2017, 2(9): 2071-2083. doi: 10.1021/acsenergylett.7b00547
    [60]

    PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors[J]. ACS Nano, 2016, 10(11): 9776-9786. doi: 10.1021/acsnano.6b05944
    [61]

    SAPAROV B, MITZI D. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715
    [62]

    WANG J, SU R, XING J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite[J]. ACS Nano, 2018, 12(8): 8382-8389. doi: 10.1021/acsnano.8b03737
    [63]

    YEN M, LEE C, YAO Y, et al. Tamm-plasmon exciton-polaritons in single-monolayered CsPbBr3 quantum dots at room temperature[J]. Advanced Optical Materials, 2023, 11(4): 2202326. doi: 10.1002/adom.202202326
    [64]

    POLIMENO L, FIERAMOSCA A, LERARIO G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites[J]. Advanced Optical Materials, 2020, 8(16): 2000176.
    [65]

    LANTY G, LAURET J S, DELEPORTE E, et al. UV polaritonic emission from a perovskite-based microcavity[J]. Applied Physics Letters, 2008, 93(8): 81101.
    [66]

    WU J Z, LONG H, SHI X L, et al. Polariton lasing in InGaN quantum wells at room temperature[J]. Opto-Electronic Advances, 2019, 2(12): 190014.
    [67]

    BAUMBERG J J, CHRISTOPOULOS S, von HOGERSTHAL G B H, et al. Room temperature polariton lasing and BEC in semiconductor microcavities[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, CA, USA: IEEE Press, 2008: 1-2
    [68]

    DAS A, HEO J, GUO W, et al. Room temperature polariton lasing in a single ZnO nanowire microcavity[C]//2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE Press, 2012: 1-2
    [69]

    KANG J W, SONG B, LIU W J, et al. Room temperature polariton lasing in quantum heterostructure nanocavities[J]. Science Advances, 2019, 5(4): eaau9338.
    [70]

    AL-ANI I A M, AS'HAM K, ALALOUL M, et al. Quasibound states in continuum-induced double strong coupling in perovskite and WS2 monolayers[J]. Physical Review, 2023, B108(4): 45420.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article views(515) PDF downloads(4) Cited by()

Proportional views

Research progress on polariton lasing in 2-D materials

    Corresponding author: WANG Wei, w.wang@scu.edu.cn
  • 1. College of Physics, Sichuan University, Chengdu 610065, China
  • 2. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 China

Abstract: Polariton lasing is a new type of lasing that realizes ultra-low threshold lasing with the coherence of Bose-Einstein condensation(BEC) of exciton-polariton in semiconductors. Unlike conventional 3-D organic and inorganic materials, 2-D transition metal dichalcogenides and 2-D perovskite show great potential in the further development of polariton lasing due to their high exciton binding energies, high oscillator strengths, direct band gaps, van der Waals properties, and valley polarization properties, which are conducive to the realization of strong coupling of exciton and cavity modes and BEC of exciton-polariton. In this review, the principle and progress of polariton lasing in 2-D transition metal chalcogenides and perovskite were mainly focused on, starting with development of strong coupling between exciton and cavity modes. Then, the modulation of the coherence of polariton, the realization of the BEC and polariton lasing was introduced. Finally, an outlook will be given on the future development of polariton lasing in 2-D materials.

0.   引言
  • 极化激元激光是一种新型激光源,具有低能量阈值,相干性好等特征。极化激元是强耦合下的激子和微腔中的光子形成的混合准粒子,可以通过受激散射实现玻色-爱因斯坦凝聚(Bose-Einstein condensation, BEC)[1-5]。BEC本身是一种大量粒子分布于基态的量子相干宏观态。当极化激元寿命短于或相当于其能量弛豫时间,这一分布将受非平衡效应与非凝聚的激子影响,产生低阈值的相干激光发射[6-7]。这一特点使得极化激元激光不必同传统激光一样,依赖于工作物质的粒子数布居反转,来实现光的增益放大。并且,极化激元得益于其半光半物质的性质,具有极小的有效质量,通常是电子质量的10-5~10-4倍,其易于冷却和限制于微腔,这对于实现高温或低密度下的BEC有着重要意义[1, 8]。这些优良性质或将颠覆传统激光器,有望在低功耗光电子学、量子信息处理和非线性光学等领域有潜在的应用。

    近年来,随着对极化激元研究的不断深入,基于各种材料的极化激元激光器开始涌现。传统的无机半导体(GaAs)由于其较低的激子束缚能而难以实现室温强耦合,通常只能在低温下应用[9],而具有高激子束缚能的无机半导体(GaN和ZnO),则可以一定程度上克服这一困难,实现室温极化激元激光[10-11]。具有紧密束缚的Frenkel激子有机半导体,有着较大的激子结合能,并且能够在室温下产生稳定的激子-极化激元,是在室温下演示极化激元激光的极具吸引力的候选材料[12-16],其来源广泛,可以通过分子设计和器件工程来调控其光学性质,实现宽波长范围的激光发射。有机材料具有溶液可加工性、柔性、低成本等特点,可以与其它光电器件进行有效的集成和互联[17]。有机半导体极化激元激光在多模切换方面也有所研究[18]。常用的有机半导体有蒽[13]、芴衍生物[12, 17]

    有多种结构可以实现极化激元激光。比如将半导体制成纳米线、纳米棒或者纳米片等,一般夹在分布式布喇格反射镜(distributed Bragg reflector, DBR)中形成光学微腔,以实现极化激元激光[10, 19-21]。这些结构各自也有不错的性质,比如与广泛研究的平面微腔相比,纳米线中的激子和光子可以被限制在完全相同的体积空间内,从而实现高效耦合[21],而超表面可以通过改变设计,精确地控制光学共振的光谱位置和辐射寿命[22]

    然而,有机材料因为无序的电势分布而表现出强烈的局域效应,而宽禁带半导体仅适用于短波长,并且需要复杂的生长技术以匹配晶格。近年来,以石墨烯为代表的2维材料以其表现出的大量优异的光学、电子特性而广泛应用于光电子领域[23-26]。不过,由于石墨烯并不具有直接带隙,人们将目光转移到了过渡金属硫族化合物(transition metal chalcogenide,TMD)与钙钛矿。它们不仅在众多性质上优于传统无机有机材料,并且在由3维向2维转变时,将诞生新的性质,为未来的低阈值甚至无阈值极化激元激光带来了全新的动力。它们的玻尔半径小,有着很高的激子结合能,为激子的稳定存在提供了条件,同时,又有着高振子强度[27],有利于实现室温下的激子-极化激元强耦合[22, 28-30]。由于它们具有范德华特性,可以无视晶格适配问题以实现极化激元激光。

    本文中主要介绍2维TMD与钙钛矿这两种材料,从它们的激子与腔模式形成的强耦合机制出发,总结了两种材料技术性的突破,纵观极化激元激光的发展历程,并对极化激元激光领域的未来发展进行了展望。

1.   过渡金属硫族化合物
  • TMD是一种丰富的天然的材料,其相邻的两层由范德华力连接。其化学式为MX2,其中M是第六主族的过渡金属元素(M=Mo、W),X是硫族元素(X=S、Se、Te)。TMD自发现其在单层极限带隙从间接带隙转变为直接带隙以来,一直是一组极具吸引力的半导体。相比于3维材料,直接带隙2维TMD有着更高的激子结合能(0.5 eV~1.0 eV)[31-34],并且对于部分TMD,比如2维MoS2,其单层光致发光(photoluminescence,PL)较其3维形态有所提高。它们为研究具有新的自旋谷自由度的半导体材料中的2维激子提供了一个几乎理想的系统。

  • 要实现极化激元激光首先要实现激子与微腔模式的强耦合,而实现强耦合的最常见方法是将工作介质嵌入两个DBR形成的法布里-珀罗(Fabry-Perot, F-P)光学微腔中[35-39]。当激子与电磁场之间的能量交换率高于系统的其它能量耗散率(即光学损耗和激子非辐射损耗)时,就会发生强激子-光子耦合。能量交换率通常与激子振荡强度有关,这也是TMD和钙钛矿成为在室温下实现强耦合的良好材料的一大原因。当满足这些条件时,系统可以用两种新的本征态来描述,分别称为上激子极化激元(upper polariton branch,UPB)和下激子极化激元(lower polariton branch,LPB)。在耦合振荡模型中,UPB、LPB的能量[9]为:

    式中:$ \hbar $是约化普朗克常数;Eex是激子能量;Ecav是腔模式能量;ΓcavΓex分别为腔模式和激子的半峰全宽;V为光与物质相互作用势能,而当Eex=Ecav时,拉比分裂能量[9]为:

    早在2014年,LIU团队在2维TMD中观测到了激子-极化激元[9]。该实验在MoS2嵌入SiO2/Si3N4的DBR组成的光学微腔中实现了激子与光子的强耦合,拉比分裂为$ \hbar $ΩRabi=46 meV±3 meV。随后,其它的TMD也陆续实现了激子极化激元强耦合,比如,2016年,FLATTEN等人首次在室温下实现了激子极化激元的强耦合[40]。该团队构造了一种基于WS2材料的开放式结构(见图 1a),微腔的一侧是DBR,另一侧是银镜,中间夹着WS2图 1b是当保持模式数q=3时,拉比分裂的反交叉图像;由于是开放式结构,其拉比分裂将随腔的模式数而改变(见图 1c),通过改变腔长度以改变模的数量,可以得到模的数量变化对拉比分裂能量的影响,图 1c中纵坐标相同的3个点为同一模式数下的重复测量,从左至右模式数依次为q=3,4,…, 12,当模式数增加时,拉比分裂能量减小;图 1d中的红线为图 1b中激子能量与腔能量相交处的垂直切面图,此时腔长L=0.185 μm,绿线和蓝线为拟合的洛伦兹峰,可以得到拉比分裂为$ \hbar $ΩRabi= (70±2) meV。

    Figure 1.  Exciton-polariton in WS2[40]

    同年,HU团队利用MoS2材料实现了塔姆极化激元与激子的强耦合,拉比分裂为54 meV[31]。2017年,WURDACK团队则利用GaAs中的万尼尔(Wannier)型激子、单层MoSe2中强束缚谷激子和塔姆-等离子体-极化激元器件中的微腔光子间的强耦合机制,形成了混合激子-极化激元强耦合[41]

    2020年,XIE等人从理论上研究了具有单个金属纳米棒的镜面纳米颗粒(nanoparticle on mirror,NPoM)系统支持的磁偶极子模式与单层WS2中的激子之间的强耦合[29],其结构如图 2a所示;该团队证明了仅有少数激子(激子数N<10)参与时,就可以产生高达220 meV的拉比分裂(见图 2b),比以往实验中实现的强耦合高了一个数量级;该团队还提供了一种量子理论模型,用于解释这种强耦合机制,其与模拟的结果符合良好(见图 2c),并且指出:随着该系统的非相干程度的增加,UPB布居数将增加(见图 2d),这为未来实现极化激元激光提供了全新的思路。

    Figure 2.  Theoretical prediction of ultra strong coupling in WS2[29]

  • 相干性是满足激光标准的基础。然而,迄今发现的这些单层半导体中的极化激元由于极化激元动力学的不可控和相干耦合减弱,很难支持强非线性相互作用和量子相干性,这为2维激子-极化激元的研究带来了不小的阻碍[42]。相干性减弱表现为分裂线宽比(splitting-to-linewidth,SLR)较小。大的SLR可以在高抽运密度下保持不受干扰的相干耦合,支持强非线性极化激元相互作用,并减缓相对于非线性相互作用率的极化激元泄漏率,这对极化激元凝聚至关重要[43]

    激子-极化激元组成是控制极化激元凝聚态非线性相互作用的重要物理量[44-45],可以通过腔-激子的失谐直接管理。由于难以控制激子部分,这种失谐通常通过对光子部分进行繁琐的修改来实现[44, 46-49]。2017年,LIU等人利用TMD中特有的Wannier-mott激子,以其对温度的敏感性来控制激子与极化激元的耦合强度与失谐,进而达到调节SLR的目的[50],该团队设计了一种紧凑的结构,通过将脆弱的2维WS2夹于含氢硅酸盐(hydrogen silsesquioxane,HSQ)和Al2O3保护层中,再在上下各放上7.5对、12.5对SiO2/Si3N4分布式DBR以实现强耦合激子极化激元,其强耦合的特性可从图 3中的双支极化激元色散特征中看出[50]图 3a中纵轴表示光子能量,灰度表示反射率。在TM偏振下,激子与腔模式耦合,形成UPB与LPB,UPB的色散在小入射角时变平,而LPB的色散在大角度时变平。空穴光子色散以蓝色虚线表示,而激子能量(2.078 eV)则以红色虚线表示,极化激元分支用品红色曲线标识。在入射角θ的正弦值sin θ=0.25时,拉比分裂直接读数约为40 meV,因此SLR大于3.3。通过改变温度,调节Wannier-mott激子,进而控制对应的样品失谐,从而表现出不同的拉比分裂(见图 3b)。130 K、210 K、230 K时的拉比分裂为39 meV、37 meV、36 meV。色散曲线与PL分布(见图 3c)非常一致,证实了在这种非共振抽运过程中,经过散射和热弛豫后的极化激元态是稳定的。极化激元中激子与光子的权重系数可由Hopfield系数给出。随着腔体失谐由负值(130 K)到接近零值(210 K)再到正值(230 K),Hopfield系数的变化表明,LPB可以灵活地从更像光子的状态调谐到光子-激子混合状态,并在小入射角下调谐到更像激子的状态(见图 3d)。这种可调谐性提供了随意控制极化激元组成的自由,从而优化了极化激元动力学。这项工作为极化激元凝聚提供了基础,还为维持单层TMD中谷极化激元相干性带来了希望。

    Figure 3.  Control of coherence of polariton in WS2[50]

  • BEC的实现对于极化激元激光的相干性有着重要的意义。在高温下实现BEC通常需要外界抽运能量,当能量超过一定值时,则会出现明显的阈值现象:PL的强度有明显的非线性增长,而峰宽则由于凝聚效应迅速下降到某个值附近,表现出相干性。近年来有不少团队致力于实现单层TMD中的BEC,比如,2018年,WALDHERR等人使用GaAs量子阱与单层MoSe2实现了超低温(4.2 K)下的BEC[51];2021年,ANTON-SOLANAS团队利用GaAs和MoSe2实现了BEC以及对极化激元的谷调控[52]。这些工作为日后实现2维TMD极化激元激光铺平了道路。

    2021年,ZHAO团队首次实现了室温下2维TMD材料的超低阈值极化激元激光[53]。如图 4a所示,实验微腔为全介质λ/2微腔,由单层WS2、DBR和两个SiO2间隔层组成;在强耦合以及抽运光源作用下,激子-极化激元通过受激散射发生BEC,LPB色散表明大量粒子凝聚在基态(见图 4b);在高于阈值的抽运能量下,极化激元发出陷阱态发射以及LPB发出非凝聚背景发射,在PL谱中表现为非常细的洛伦兹峰以及背景发射宽峰(见图 4c);随着抽运能量的增加,洛伦兹峰变得更加的尖细,并且发生蓝移,充分体现了激子-极化激元的BEC现象,在迈克耳孙干涉仪下,在时间延迟Δt=0的情况下有着不错的可见度,进一步说明了发出的激光的相干性(见图 4d);如图 4e所示,通过减小微腔模式的失谐,激光阈值可以降低,最低可达到约0.06 W/cm2,这些工作为日后低阈值极化激元激光提供了良好的平台;图 4f中清楚地展示了在阈值附近出现的PL随抽运能量的非线性增长,这与图 4c相对应。

    Figure 4.  Ultra-low threshold polariton lasing in WS2[53]

    不同于前面提到的LPB的BEC,2023年,CHEN团队报告了在可转移WS2单层微腔中观察到上极化激元分支的BEC(见图 5a)[54]。该团队设计了一种将WS2夹在两块由SiO2/SiNx层交替构成的DBR组成的光学微腔中。实验中,UPB的PL比LPB的更强,在增大功率时,出现了明显的阈值现象(见图 5b),PL出现强烈的非线性增长,峰宽降低为原本的1/4倍,能量则出现1 meV的蓝移,极化激元时间相干性增加;通过调节迈克耳孙干涉仪的时间延迟可以测得当抽运功率从0.6Pth增加到2Pth时(Pth为阈值能量),相干时间(δt)从55 fs增加到138 fs(见图 5c图 5d);该实验中,强耦合机制下拉比分裂为30 meV(见图 5e)。模型模拟与实验结果表明,只有当UPB和下极化激元之间的转换时间长于或相当于极化激元的寿命时,才会发生UPB凝聚,在长寿命极化激元的情况下,UPB衰变到LPB的速度要比在腔外衰变的速度快得多。正因为如此,几乎所有的UPB在逃逸出空腔之前都会首先转化为LPB,从而使得UPB分支难以被探测到。随着受激散射导致的极化激元密度增加,这一转换时间会变得更快,最终快到足以与极化激元的寿命相媲美。这种效应也是上极化激元凝聚阈值低于下极化激元的重要因素。该工作对极化激元激光器的设计和开发具有实际意义,因为在极化激元激光器中,LPB和UPB凝聚态之间的竞争起着至关重要的作用。

    Figure 5.  BEC of upper-branch exciton-polaritons in WS2[54]

2.   钙钛矿
  • 与2维TMD相比,2维钙钛矿的激子具有较高的振荡强度与结合能、更高的PL量子效率、非线性相互作用强度[55-57]、较高的缺陷容限,另外相比于块状钙钛矿,2维钙钛矿具有更好的湿度稳定性[58-59]。2维钙钛矿的常见结构是A2BX4A是长链烷基铵,B是金属阳离子(通常是铅或锡),X是卤化物阴离子(Cl、Br或I)[55],其中[BX6]2-八面体无机层形成了天然的量子阱结构。在这种结构中,有机阳离子起着势垒的作用,而激子则被限制在无机层中[60-61]。这样的结构使得2维钙钛矿具有与2维TMD相似的2维量子约束和介电屏蔽环境,从而导致其激子具有较大的振荡强度和较强的结合能(甚至高达470 meV),一般高于2维TMD。

    与2维TMD类似,2维钙钛矿也很容易实现强耦合机制。2018年,WANG团队实现了2维有机无机钙钛矿材料的激子与单个微腔模式或多个混合微腔模式的强耦合(见图 6a)[62]。该系统由上下两块DBR镜构成的F-P微腔和单晶2维钙钛矿组成;PL谱中(见图 6b),当失谐分别为-31.7 meV、61 meV、10.8 meV时,LPB拉比分裂能分别为205 meV、221 meV、242 meV,SLR分别为34.2、18.4和15.1,这一数值比TMD更大,充分说明钙钛矿材料有着更大的耦合强度;实验中还发现布喇格模式和激子-空腔耦合态,在两份样品的角分辨PL谱中(见图 6c图 6d)可以明显看见布喇格模式与极化激元的强耦合产生反交叉。该工作为调控相干光-物质耦合和杂化以及探索室温下2维钙钛矿的基本量子现象提供了一个理想的平台。2022年,YEN团队则利用CsPbBr3的量子点特性提供了一种高度兼容的电流注入方案,以及一种直接可控的方法来适当分配激子中心,以促进与光子的强耦合,为实现电注入式极化器件提供了可能[63]

    Figure 6.  Strong coupling between excitons and cavity modes in 2-D organic-inorganic perovskite[62]

    以往2维钙钛矿从未出现凝聚现象。2020年,POLIMENO团队首次观察到了2维碘化苯乙胺钙钛矿(C6H5(CH2)2NH3)2PbI4(phenethylammonium lead iodide,PEAI)的极化激元的凝聚[64]。如图 7a所示,该实验中将PEAI夹在Ag和DBR构成的光学微腔中,通过增大抽运能量,发现了两个阈值,第1个阈值出现在抽运能量为50 μJ/cm2时,此时由双激子态发射,能量低于该阈值时,通过迈克耳孙干涉仪检测发现相干性较差;而第2个阈值出现在抽运能量为200 μJ/cm2时,此时由极化激元发射;继续增大能量,可以在迈克耳孙干涉仪下观察到良好的相干性(见图 7b);对比能量与K空间的关系发现(见图 7c图 7d),相比于第1个阈值,达到第2个阈值时发射的能量坍缩在LPB的底部,形成极化激元凝聚;同时作者指出,只有高质量的2维晶体才会出现两种截然不同的阈值,当钙钛矿存在缺陷结构时,极化激元凝聚则不会产生,此时这些缺陷有更低的阈值,但是发射能量分散,相干性差,并且损坏阈值也更低。这项工作为有朝一日实现钙钛矿中的BEC开辟了道路[64]

    Figure 7.  Two threshold phenomenon and BEC in 2-D perovskite[64]

3.   结束语
  • 详细介绍了近年来2维TMD与2维钙钛矿中极化激元激光的研究进展,从两种材料的性质出发,介绍了这两种材料中激子与微腔模式的强耦合机制、极化激元相干性的调控、BEC以及极化激元激光发射。极化激元激光近10年的发展无疑说明了2维TMD与2维钙钛矿材料巨大的潜力。然而迄今为止,成功实现2维TMD极化激元激光的实验仍寥寥无几,而2维钙钛矿中则尚未实现极化激元激光,同时3维室温极化激元激光却已有大量实验成功实现[11, 20, 65-69],这充分说明了2维室温极化激元激光实现的难度。对于2维钙钛矿而言,为实现BEC以及提高环境稳定性,提高2维材料质量、减少结构缺陷或将成为重要的手段[64]。制备高品质的2维钙钛矿是实现2维极化激元激光应该攻克的难题。对于2维TMD而言,实现更强的激子与微腔模式的强耦合则有利于BEC的稳定性,比如通过设计更好的结构以减少微腔内激子与微腔系统的损耗[29]。为实现室温下更低阈值的极化激元激光,上极化激元以及失谐对于阈值的影响仍然需要深入研究[53-54]。此外,2维极化激元激光未来还可以向多模式激光迈进,比如有团队已经将2维TMD与2维钙钛矿相结合,实现了双强耦合,这为实现双波长的极化激元激光铺平了道路[70]

    总之,2维TMD与2维钙钛矿以其有着一系列良好的性质,为室温低阈值的极化激元激光带来了全新的动力。为了有朝一日能够实现稳定的2维极化激元激光,需要更加先进的2维材料制备工艺,来对BEC、强耦合等进行多方面的研究。

Reference (70)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return