Advanced Search
ZHANG Ruiyang, BAO Wenrui, DU Jing, WANG Wei. Research progress on polariton lasing in 2-D materials[J]. LASER TECHNOLOGY, 2024, 48(6): 876-883. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.013
Citation: ZHANG Ruiyang, BAO Wenrui, DU Jing, WANG Wei. Research progress on polariton lasing in 2-D materials[J]. LASER TECHNOLOGY, 2024, 48(6): 876-883. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.013

Research progress on polariton lasing in 2-D materials

More Information
  • Received Date: January 07, 2024
  • Revised Date: March 14, 2024
  • Published Date: November 24, 2024
  • Polariton lasing is a new type of lasing that realizes ultra-low threshold lasing with the coherence of Bose-Einstein condensation(BEC) of exciton-polariton in semiconductors. Unlike conventional 3-D organic and inorganic materials, 2-D transition metal dichalcogenides and 2-D perovskite show great potential in the further development of polariton lasing due to their high exciton binding energies, high oscillator strengths, direct band gaps, van der Waals properties, and valley polarization properties, which are conducive to the realization of strong coupling of exciton and cavity modes and BEC of exciton-polariton. In this review, the principle and progress of polariton lasing in 2-D transition metal chalcogenides and perovskite were mainly focused on, starting with development of strong coupling between exciton and cavity modes. Then, the modulation of the coherence of polariton, the realization of the BEC and polariton lasing was introduced. Finally, an outlook will be given on the future development of polariton lasing in 2-D materials.
  • [1]
    SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17(6): 3982-3988. DOI: 10.1021/acs.nanolett.7b01956
    [2]
    RAM R J, PAU S, YAMAMOTO Y, et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers[J]. Physical Review, 1996, A53(6): 4250-4253.
    [3]
    CIUTI C, BAUMBERG J J, TEJEDOR C, et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J]. Physical Review, 2002, B66(8): 85304.
    [4]
    MALPUECH G, DI CARLO A, KAVOKIN A, et al. Room-temperature polariton lasers based on GaN microcavities[J]. Applied Physics Letters, 2002, 81(3): 412-414. DOI: 10.1063/1.1494126
    [5]
    KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 2006, 443(7110): 409-414. DOI: 10.1038/nature05131
    [6]
    KUMAR N. Bose-Einstein condensation in a dilute atomic vapour[J]. Current Science (Bangalore), 1995, 69(6): 492-493.
    [7]
    DENG H, WEIHS G, SNOKE D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences, 2003, 100(26): 15318-15323. DOI: 10.1073/pnas.2634328100
    [8]
    HAUG H, YAMAMOTO Y, DENG H. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489-1537. DOI: 10.1103/RevModPhys.82.1489
    [9]
    LIU X, GALFSKY T, SUN Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34. DOI: 10.1038/nphoton.2014.304
    [10]
    HEO J, JAHANGIR S, XIAO B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Lett, 2013, 13(6): 2376-2380. DOI: 10.1021/nl400060j
    [11]
    DAS A, HEO J, JANKOWSKI M, et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 2011, 107(6): 66405. DOI: 10.1103/PhysRevLett.107.066405
    [12]
    WEI M, RUSECKAS A, MAI V T N, et al. Low threshold room temperature polariton lasing from fluorene-based oligomers[J]. Laser & Photonics Reviews, 2021, 15(8): 2100028.
    [13]
    FORREST S R, KÉNA-COHEN S. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 2010, 4(6): 371-375. DOI: 10.1038/nphoton.2010.86
    [14]
    LA ROCCA G C. Polariton lasing[J]. Nature Photonics, 2010, 4(6): 343-345. DOI: 10.1038/nphoton.2010.131
    [15]
    TANG J, ZHANG J, LV Y, et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nature Communications, 2021, 12(1): 1-8. DOI: 10.1038/s41467-020-20314-w
    [16]
    FRENKEL J. On the transformation of light into heat in solids. Ⅰ[J]. Physical Review, 1931, 37(1): 17-44. DOI: 10.1103/PhysRev.37.17
    [17]
    WEI M, RAJENDRAN S K, OHADI H, et al. Low-threshold polariton lasing in a highly disordered conjugated polymer[J]. Optica, 2019, 6(9): 1124-1129. DOI: 10.1364/OPTICA.6.001124
    [18]
    MOILANEN A J, ARNARDóTTIR K B, KEELING J, et al. Mode switching dynamics in organic polariton lasing[J]. Physical Review, 2022, B106(19): 195403.
    [19]
    GHOSH P, YU D, HU T, et al. Strong exciton-photon coupling and polariton lasing in GaN microrod[J]. Journal of Materials Science, 2019, 54(11): 8472-8481. DOI: 10.1007/s10853-019-03493-w
    [20]
    CHRISTOPOULOS S, VON HOGERSTHAL G B, GRUNDY A J, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. DOI: 10.1103/PhysRevLett.98.126405
    [21]
    ZHAO D, LIU W, ZHU G, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire[J]. Nano Energy, 2020, 78: 105202. DOI: 10.1016/j.nanoen.2020.105202
    [22]
    MASHARIN M A, SAMUSEV A K, BOGDANOV A A, et al. Room-temperature exceptional-point-driven polariton lasing from perovskite metasurface[J]. Advanced Functional Materials, 2023, 33(22): 2215007. DOI: 10.1002/adfm.202215007
    [23]
    DAI S, MA Q, LIU M K, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 2015, 10(8): 682-686. DOI: 10.1038/nnano.2015.131
    [24]
    BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. DOI: 10.1021/nl400601c
    [25]
    WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. DOI: 10.1038/nphoton.2013.241
    [26]
    CHEN J, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. DOI: 10.1038/nature11254
    [27]
    CHERNIKOV A, ZHANG X, RIGOSI A, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Physical Review, 2014, B90(20): 205422.
    [28]
    GU J, CHAKRABORTY B, KHATONIAR M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 2019, 14(11): 1024-1028. DOI: 10.1038/s41565-019-0543-6
    [29]
    XIE P, LIANG Z, LI Z, et al. Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator[J]. Physical Review, 2020, B101(4): 45403.
    [30]
    WANG S, LE-VAN Q, VAIANELLA F, et al. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances[J]. ACS Photonics, 2019, 6(2): 286-293. DOI: 10.1021/acsphotonics.8b01459
    [31]
    HU T, WANG Y, WU L, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons[J]. Applied Physics Letters, 2017, 110(5): 51101. DOI: 10.1063/1.4974901
    [32]
    MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226. DOI: 10.1038/nphoton.2015.282
    [33]
    YE Z, CAO T, O BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. DOI: 10.1038/nature13734
    [34]
    BERKELBACH T C, HILL H M, RIGOSI A, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 76802. DOI: 10.1103/PhysRevLett.113.076802
    [35]
    ZHENG J, BARTON R A, ENGLUND D. Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors[J]. ACS Photonics, 2014, 1(9): 768-774. DOI: 10.1021/ph500107b
    [36]
    DUFFERWIEL S, SCHWARZ S, WITHERS F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6(1): 1-7.
    [37]
    SCHWARZ S, DUFFERWIEL S, WALKER P M, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities[J]. Nano Letters, 2014, 14(12): 7003-7008. DOI: 10.1021/nl503312x
    [38]
    REED J C, ZHU A Y, ZHU H, et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter[J]. Nano Letters, 2015, 15(3): 1967-1971. DOI: 10.1021/nl5048303
    [39]
    ZHANG L, WU F, HOU S, et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity[J]. Nature, 2021, 591(7848): 61-65. DOI: 10.1038/s41586-021-03228-5
    [40]
    FLATTEN L C, HE Z, COLES D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6: 33134. DOI: 10.1038/srep33134
    [41]
    WURDACK M, LUNDT N, KLAAS M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer[J]. Nature Communications, 2017, 8: 259. DOI: 10.1038/s41467-017-00155-w
    [42]
    WANG S, LI S, CHERVY T, et al. Coherent coupling of WS2 mo-nolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 2016, 16(7): 4368-4374. DOI: 10.1021/acs.nanolett.6b01475
    [43]
    GIBBS H M, JAHNKE F, KIRA M, et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 1999, 71(5): 1591-1639. DOI: 10.1103/RevModPhys.71.1591
    [44]
    OROSZ L, KAMOUN O, BOUCHOULE S, et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity[J]. Phy-sical Review Letters, 2013, 110(19): 196406. DOI: 10.1103/PhysRevLett.110.196406
    [45]
    RÉVERET F, MALLET E, DISSEIX P, et al. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO[J]. Physical Review, 2016, B93(11): 115205.
    [46]
    DASKALAKIS K S, MAIER S A, MURRAY R, et al. Nonlinear interactions in an organic polariton condensate[J]. Nature Materials, 2014, 13(3): 271-278. DOI: 10.1038/nmat3874
    [47]
    DENG H, WEIHS G, SNOKE D, et al. Condensation of semiconductor microcavity exciton polaritons[J]. Science, 2002, 298(5591): 199-202. DOI: 10.1126/science.1074464
    [48]
    von HÖGERSTHAL G B H, GRUNDY A J D, LAGOUDAKIS P G, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. DOI: 10.1103/PhysRevLett.98.126405
    [49]
    ZHANG S, CHEN J, SHI J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity[J]. ACS Photonics, 2020, 7(2): 327-337. DOI: 10.1021/acsphotonics.9b01240
    [50]
    LIU X, BAO W, LI Q, et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 2017, 119(2): 27403. DOI: 10.1103/PhysRevLett.119.027403
    [51]
    WALDHERR M, LUNDT N, KLAAS M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity[J]. Nature Communications, 2018, 9(1): 1-6. DOI: 10.1038/s41467-017-02088-w
    [52]
    ANTON-SOLANAS C, WALDHERR M, KLAAS M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal[J]. Nature Materials, 2021, 20(9): 1233-1239. DOI: 10.1038/s41563-021-01000-8
    [53]
    ZHAO J, SU R, FIERAMOSCA A, et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 2021, 21(7): 3331-3339. DOI: 10.1021/acs.nanolett.1c01162
    [54]
    CHEN X, ALNATAH H, MAO D, et al. Bose condensation of upper-branch exciton-polaritons in a transferable microcavity[J]. Nano Letters, 2023, 23(20): 9538-9546. DOI: 10.1021/acs.nanolett.3c03123
    [55]
    BLANCON J C, STIER A V, TSAI H, et al. Scaling law for exci-tons in 2D perovskite quantum wells[J]. Nature Communications, 2018, 9(1): 1-10. DOI: 10.1038/s41467-017-02088-w
    [56]
    BLANCON J, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic-inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969-985. DOI: 10.1038/s41565-020-00811-1
    [57]
    FIERAMOSCA A, POLIMENO L, ARDIZZONE V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature[J]. Science Advances, 5(5): eaav9967. DOI: 10.1126/sciadv.aav9967
    [58]
    ZHANG L, LIANG W. How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers[J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1517-1523. DOI: 10.1021/acs.jpclett.6b03005
    [59]
    HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Letters, 2017, 2(9): 2071-2083. DOI: 10.1021/acsenergylett.7b00547
    [60]
    PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors[J]. ACS Nano, 2016, 10(11): 9776-9786. DOI: 10.1021/acsnano.6b05944
    [61]
    SAPAROV B, MITZI D. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. DOI: 10.1021/acs.chemrev.5b00715
    [62]
    WANG J, SU R, XING J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite[J]. ACS Nano, 2018, 12(8): 8382-8389. DOI: 10.1021/acsnano.8b03737
    [63]
    YEN M, LEE C, YAO Y, et al. Tamm-plasmon exciton-polaritons in single-monolayered CsPbBr3 quantum dots at room temperature[J]. Advanced Optical Materials, 2023, 11(4): 2202326. DOI: 10.1002/adom.202202326
    [64]
    POLIMENO L, FIERAMOSCA A, LERARIO G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites[J]. Advanced Optical Materials, 2020, 8(16): 2000176.
    [65]
    LANTY G, LAURET J S, DELEPORTE E, et al. UV polaritonic emission from a perovskite-based microcavity[J]. Applied Physics Letters, 2008, 93(8): 81101.
    [66]
    WU J Z, LONG H, SHI X L, et al. Polariton lasing in InGaN quantum wells at room temperature[J]. Opto-Electronic Advances, 2019, 2(12): 190014.
    [67]
    BAUMBERG J J, CHRISTOPOULOS S, von HOGERSTHAL G B H, et al. Room temperature polariton lasing and BEC in semiconductor microcavities[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, CA, USA: IEEE Press, 2008: 1-2
    [68]
    DAS A, HEO J, GUO W, et al. Room temperature polariton lasing in a single ZnO nanowire microcavity[C]//2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE Press, 2012: 1-2
    [69]
    KANG J W, SONG B, LIU W J, et al. Room temperature polariton lasing in quantum heterostructure nanocavities[J]. Science Advances, 2019, 5(4): eaau9338.
    [70]
    AL-ANI I A M, AS'HAM K, ALALOUL M, et al. Quasibound states in continuum-induced double strong coupling in perovskite and WS2 monolayers[J]. Physical Review, 2023, B108(4): 45420.
  • Cited by

    Periodical cited type(4)

    1. 刘丹丹,胡伟,王丽欢,赵健,任雨,王迪,余容. 基于PointNet++的工井点云语义分割模型研究. 电力大数据. 2024(02): 77-86 .
    2. 凌忠标,关家华,简淦杨,叶蓓,李果. 基于蓝牙技术的电缆接头监测装置设计与实现. 科技与创新. 2024(14): 83-86 .
    3. 柯炳明,叶立威,廖日旭,蔡文辉,戚远航. 面向危险施工机械智能识别的改进YOLOv7算法. 电子设计工程. 2024(21): 151-155 .
    4. 郑维刚,赵振威,唐红,张忠瑞,杨鑫,杨泓悦,苗腾. 基于三维激光点云的隧道电缆敷设质量参数自动检测方法. 半导体光电. 2023(03): 460-466 .

    Other cited types(0)

Catalog

    Article views (20) PDF downloads (3) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return