Advanced Search
LYU Mengyao, WANG Haomiao, HE Yuwen, ZHOU Zhiyu, SONG Liang, DU Weichuan, WU Deyong, TANG Chun. Research progress on GaAs-based near-infrared tapered semiconductor lasers[J]. LASER TECHNOLOGY, 2024, 48(6): 799-808. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.004
Citation: LYU Mengyao, WANG Haomiao, HE Yuwen, ZHOU Zhiyu, SONG Liang, DU Weichuan, WU Deyong, TANG Chun. Research progress on GaAs-based near-infrared tapered semiconductor lasers[J]. LASER TECHNOLOGY, 2024, 48(6): 799-808. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.004

Research progress on GaAs-based near-infrared tapered semiconductor lasers

More Information
  • Received Date: February 21, 2024
  • Revised Date: April 25, 2024
  • Published Date: November 24, 2024
  • Semiconductor lasers in the near-infrared wavelength range based on GaAs substrates have made significant advancements. In the realm of high-power research, the tapered semiconductor lasers with a master-oscillator power-amplifier structure have garnered widespread attention due to its excellent characteristics, allowing for the simultaneous achievement of high power and high beam quality. The representative research results on GaAs-based tapered lasers at home and abroad in recent years were summarized, and the progresses in theoretical studies and experiments on the design of laser device structures (including the design of ridge and tapered regions as well as Bragg gratings) and the optimization of epitaxial layers were discussed. Focusing on the demands for high power, high beam quality, high brightness, and narrow linewidth applications, the research progress and performance characteristics of tapered lasers were summarized. The research work of the tapered lasers was briefly introduced. Furthermore, an outlook on the future development directions of tapered semiconductor lasers has been provided.
  • [1]
    张学聪, 钱静, 刘军, 等. 激光加工纤维增强复合材料研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111432.

    ZHANG X C, QIAN J, LIU J, et al. Recent processin laser processingof fiber-reinforcedcomposites[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111432(in Chinese).
    [2]
    陈良惠, 杨国文, 刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5): 0500001.

    CHEN L H, YANG G W, LIU Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001(in Chinese).
    [3]
    钟海文. 半导体激光点火技术的研究与应用[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    ZHONG H W. Research and application of semiconductor laser ignition technology[D]. Changchun: University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020(in Chinese).
    [4]
    王宇伟, 何华东, 张文豪, 等. 980 nm半导体红激光辅助后腹腔镜下"零缺血"肾部分切除术的应用经验[J]. 临床泌尿外科杂志, 2022, 37(1): 37-41.

    WANG Y W, HE H D, ZHANG W H, et al. Experience of 980 nm semiconductor red laser aided "zero ischemia" retroperitoneal laparoscopic partial nephrectomy[J]. Journal of Clinical Urology, 2022, 37(1): 37-41(in Chinese).
    [5]
    MULLER A, FRICKE J, BUGG F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030nm[J]. Applied Physics B, 2016, 122(4): 1-6.
    [6]
    WENZEL H, PASCHKE K, BROX O, et al. 10 W continuous-wave monolithically integrated master-oscillator power-amplifier[J]. Electronics Letters, 2007, 43(3): 160-162. DOI: 10.1049/el:20073297
    [7]
    SUMPF B, PASCHKE K, KUDRYASHOV A V, et al. Spectrally stabilized high-power high-brightness DBR-tapered lasers in the VIS and NIR range[J]. Proceedings of the SPIE, 2018, 10518: 170-177.
    [8]
    ALBRODT P, JAMAL M T, HANSEN A K, et al. Recent progress in brightness scaling by coherent beam combining of tapered amplifiers for efficient high power frequency doubling[J]. Proceedings of the SPIE, 2019, 10900: 115-124.
    [9]
    GORDEEV N Y, PAYUSOV A, MAXIMOV M. Semiconductor laser quasi-array with phase-locked single-mode emitting channels[J]. Semiconductors, 2019, 35(10): 1405-1408.
    [10]
    KHARAS D, PLANT J, LOH W, et al. High-power(>300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity[J]. IEEE Photonics Journal, 2020, 12(6): 1-12.
    [11]
    YUAN M Y, WANG W Q, WANG X Y, et al. Demonstration of an external cavity semiconductor mode-locked laser[J]. Optics Letters, 2021, 46(19): 4855-4858. DOI: 10.1364/OL.428794
    [12]
    SUMP B, KLEHR A, VU T N, et al. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL application[J]. Proceedings of the SPIE, 2015, 9382: 231-238.
    [13]
    CHRISTENSEN M, HANSEN A K, NOORDEGRAAF D, et al. Modulation of frequency doubled DFB-tapered diode lasers for medical treatment[J]. Proceedings of the SPIE, 2017, 10088: 205-210.
    [14]
    ANDRE T, JENS M, PETER B, et al. Next generation high-brightness diode lasers offer new industrial applications[J]. Proceedings of the SPIE, 2008, 6876: U8760.
    [15]
    HANSEN A K, TAWFIEQ M, JENSEN O B, et al. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals[J]. Optics Express, 2015, 23(12): 15921-15934.
    [16]
    张建. GaAs基近红外半导体激光器的设计、生长和制备研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2013.

    ZHANG J. Design, growth and fabrication of near infrared semiconductor laser based on GaAs[D]. Changchun: University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2013(in Chinese).
    [17]
    王芝浩. 970 nm高亮度大功率锥形半导体激光器的研究[D]. 长春: 长春理工大学, 2023.

    WANG Zh H. Studies on 970 nm high brightness high power tapered semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2023(in Chinese).
    [18]
    曼玉选. 高亮度锥形半导体激光器结构的研究[D]. 北京: 中国科学院大学(中国科学院半导体研究所), 2021.

    MAN Y X. Research on structure of high-brightness tapered diode lasers[D]. Beijing: University of Chinese Academy of Sciences(Institute of Semiconductors, Chinese Academy of Sciences), 2021(in Chinese).
    [19]
    杨晔, 刘云, 秦莉, 等. 850 nm高亮度锥形半导体激光器的光电特性[J]. 发光学报, 2011, 32(6): 593-597.

    YANG Y, LIU Y, QIN L, et al. Electro-optic properties of 850 nm high-brightness tapered lasers[J]. Chinese Journal of Luminescence, 2011, 32(6): 593-597(in Chinese).
    [20]
    YANG Y, LIU Y, ZHANG J L, et al. Near diffraction limit high-brightness 850 nm tapered laser diodes[J]. Chinese Journal of Luminescence, 2011, 32(10): 1064-1068.
    [21]
    LIU L, QU H, WANG Y, et al. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Optics Letters, 2014, 39(11): 3231-3234.
    [22]
    LI Y, DU W Ch, ZHOU K, et al. High-brightness tapered laser diodes with photonic crystal structures[J]. Proceedings of the SPIE, 2018, 10697: 1238-1242.
    [23]
    谭满清, 游道明, 郭文涛, 等. 单片集成式主振荡功率放大器研究进展[J]. 中国光学, 2023, 16(1): 61-75.

    TAN M Q, YOU D M, GUO W T, et al. Research progress of monolithic integration master-oscillation power-amplifiers[J]. Chinese Optics, 2023, 16(1): 61-75(in Chinese).
    [24]
    杨晶晶. 锥形半导体激光器模式调控研究[D]. 长春: 长春理工大学, 2023.

    YANG J J. Study on mode regulation of tapered laser diode[D]. Changchun: Changchun University of Science and Technology, 2003 (in Chinese).
    [25]
    朱坤, 李辉, 郝永芹, 等. 分布布喇格反射器半导体激光器中光栅结构设计[J]. 中国激光, 2023, 50(11): 1101022.

    ZHU K, LI H, HAO Y Q, et al. Design of grating structure in distributed Bragg reflector semiconductor laser[J]. Chinese Journal of Lasers, 2023, 50(11): 1101022 (in Chinese).
    [26]
    LEI Y X, CHEN Y Y, GAO F, et al. 990 nm high-power high-beam-quality DFB laser with narrow linewidth regulation led by gain-coupled effect[J]. IEEE Photonics Journal, 2019, 11(1): 1-9.
    [27]
    KAUNGA-NYIRENDA S N, BULL S, LIM J J, et al. Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating[J]. IET Optoelectronics, 2014, 8(2): 99-107.
    [28]
    FRICKE J, WENZEL H, BUGGE F, et al. High-power distributed feedback lasers with surface gratings[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1443-1445.
    [29]
    ZOLOTAREV V V, YU L A, SOKOLOVA Z N, et al. Diode lasers with front surface high-order distributed Bragg reflector[C]//Fifth International Symposium on Coherent Optical Radiation of Semiconductor Compounds and Structures. Moscow, Russia: Journal of Physics Conference Series, 2016, 740(1): 012003.
    [30]
    MÜLLER A, FRICKE J, BUGG F, et al. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12.7 W of optical output power[J]. Proceedings of the SPIE, 2016, 9767: 193-200.
    [31]
    MÜLLER A, ZINK C, FRICKE J, et al. 1030 nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of the SPIE, 2017, 10123: 197-203.
    [32]
    MÜLLER A, FRICKE J, BROX O, et al. Increased diffraction efficiencies of DBR gratings in diode lasers with adiabatic ridge waveguides[J]. Semiconductor Science and Technology, 2016, 31(12): 125011.
    [33]
    CHRISTOF Z, MAABDORF A, FRICKE J, et al. Monolithic master oscillator tilted tapered power amplifier emitting 9.5 W at 1060 nm[J]. IEEE Photonics Technology Letters, 2020, 32(1): 59-62.
    [34]
    侯继达. 905 nm外延叠层多有源区激光器的研制[D]. 北京: 中国科学院研究生院, 2018.

    HOU J D. Study on and fabrication of 905 nm epitaxially stacked structure semiconductor laser[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2018(in Chinese).
    [35]
    TIJERO J M G, ODRIOZOLA H, BORRUEL L, et al. Enhanced brightness of tapered laser diodes based on an asymmetric epitaxial design[J]. IEEE Photonics Technology Letters, 2007, 19(20): 1640-1642.
    [36]
    GUO R, ZHENG J, ZHANG Y, et al. Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers[J]. Science Bulletin, 2015, 60(11): 1026-1032.
    [37]
    PASCHKE K, SUMPF B, DITTMAR F, et al. Nearly diffraction limited 980 nm tapered diode lasers with an output power of 7.7 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(5): 1223-1227.
    [38]
    OSTENDORF R, KAUFEL G, MORITZ R, et al. 10 W high-efficiency high-brightness tapered diode lasers at 976 nm[J]. Proceedings of the SPIE, 2008, 6876: 146-153.
    [39]
    FIEBIG C, BLUME G, KASPARI C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255.
    [40]
    M LLER A, ZINK C, FRICKE J, et al. Efficient, high brightness 1030 nm DBR tapered diode lasers with optimized lateral layout[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6): 1-7.
    [41]
    李长伟, 陈笑, 蔡园园, 等. 一维边发射有机半导体光子晶体激光器设计[J]. 光学学报, 2018, 38(9): 0914001.

    LI Ch W, CHEN X, CAI Y Y, et al. Design of one-dimensional edge-emitting organic semiconductor photonic crystal lasers[J]. Acta Optica Sinica, 2018, 38(9): 0914001(in Chinese).
    [42]
    MA X L, LIU A J, QU H W, et al. Nearly diffraction-limited and low-divergence tapered lasers with photonic crystal structure[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2403-2406.
    [43]
    MA X L, QU H W, QI A Y, et al. High power tapered lasers with optimized photonic crystal structure for low divergence and high efficiency[J]. Semiconductor Science and Technology, 2018, 33(4): 045010.
    [44]
    李景, 邱运涛, 曹银花, 等. 高亮度锥形半导体激光器[J]. 发光学报, 2016, 37(8): 990-995.

    LI J, QIU Y T, CAO Y H, et al. High brightness tapered diode laser[J]. Chinese Journal of Luminescence, 2016, 37(8): 990-995(in Chinese).
    [45]
    孙胜明, 范杰, 徐莉, 等. 976 nm锥形半导体激光器结构设计与优化[J]. 红外与激光工程, 2017, 46(12): 32-37.

    SUN Sh M, FAN J, XU L, et al. Design and optimization of 976 nm tapered semiconductor laser[J]. Infrared and Laser Engineering, 2017, 46(12): 32-37(in Chinese).
    [46]
    吕国瑞, 卞进田, 温佳起, 等. 窄谱宽中红外激光技术研究进展[J]. 激光技术, 2023, 47(6): 742-750. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.003

    LÜ G R, BIAN J T, WENG J Q, et al. Research progress of narrow-linewidth mid-infrared laser[J]. Laser Technology, 2023, 47(6): 742-750(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.06.003
    [47]
    曼玉选, 仲莉, 马骁宇, 等. 975 nm分离电极锥形半导体激光器特性分析[J]. 中国激光, 2021, 48(17): 1701005.

    MAN Y X, ZHONG L, MA X Y, et al. Characteristic analysis of 975 nm tapered semiconductor lasers with separated contacts[J]. Chinese Journal of Lasers, 2021, 48(17): 1701005(in Chinese).
    [48]
    杜维川, 何林安, 李弋, 等. 10 W近衍射极限输出的高效率窄线宽主控振荡放大半导体激光器[J]. 红外与毫米波学报, 2023, 42(1): 21-25.

    DU W Ch, HE L A, LI Y, et al. Monolithic master oscillator high efficiency diode laser with nearly diffraction-limited narrowband emission and 10 W of optical output power[J]. Journal of Infrared Millimeter Waves, 2023, 42(1): 21-25(in Chinese).
    [49]
    LEI Y X, CHEN Y Y, GAO F, et al. 996 nm high-power single-longitudinal-mode tapered gain-coupled distributed feedback laser diodes[J]. Applied Optics, 2019, 58(23): 6426-6432.
    [50]
    LEI Y X, CHEN Y Y, GAO F, et al. High-power single-longitudinal-mode double-tapered gain-coupled distributed feedback semiconductor lasers based on periodic anodes defined by i-line lithography[J]. Optics Communications, 2019, 443: 150-155.
    [51]
    CHEN Zh H, QU H W, MA X L, et al. High-brightness low-divergence tapered lasers with a narrow taper angle[J]. Chinese Physics Letters, 2019, 36(8): 084201.
    [52]
    ZINK C, MAIWALD M, WENZEL H, et al. Monolithic master oscillator with tapered power amplifier diode laser at 1060 nm with additional control section for high power operation[C]//The European Conference on Lasers and Electro-Optics. Munich, Germany: IEEE Press, 2019: 204820575.
    [53]
    ZHOU X Y, MA X L, QU H W, et al. Extremely high-brightness tapered photonic crystal diode laser with narrow-emitting aperture[J]. Applied Physics Express, 2019, 12(9): 094004.
    [54]
    HE L A, DU W Ch, LI Y, et al. Investigation of the gain match in high brightness 980 nm tapered diode laser[J]. Journal of Luminescence, 2023, 257(3): 119644.
    [55]
    袁庆贺, 井红旗, 张秋月, 等. 砷化镓基近红外大功率半导体激光器的发展及应用[J]. 激光与光电子学进展, 2019, 56(4): 040003.

    YUAN Q H, JING H Q, ZHANG Q Y, et al. Development and applications of GaAs-based near-infrared high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 2019, 56(4): 040003(in Chinese).
  • Related Articles

    [1]LIANG Zhigang, ZHAN Jinming, SHI Wenqing, XIE Yuping, HUANG Jiang, AN Fenju. Effect of scanning path on deformation of laser cladding coating on thin-walled part[J]. LASER TECHNOLOGY, 2020, 44(4): 447-450. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.009
    [2]LIU Yu, XIAO Shide, ZHANG Rui, ZHANG Ruoling, ZHANG Lei. Initial estimation of digital image correlated deformation based on genetic algorithms[J]. LASER TECHNOLOGY, 2020, 44(1): 130-135. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.023
    [3]WANG Junfei, YUAN Juntang, WANG Zhenhua, ZHANG Bo, LIU Jiaxin. Deformation and residual stress of TC4 titanium alloy thin-wall parts by selective laser melting[J]. LASER TECHNOLOGY, 2019, 43(3): 411-416. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.023
    [4]ZHANG Jianyun, CHEN Fan, MA Jun, PAN Shaohua, WEI Cong, WANG Min, LIU Daiming. Thermal deformation of fused silica substrates and its influence on beam quality[J]. LASER TECHNOLOGY, 2019, 43(3): 374-379. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.016
    [5]LI Ce, LIU Junwei, ZHAO Peie, ZHOU Jie, XIE Rihua, LUO Xiong, ZHOU Dingfu. Correction method of tilt wind field of mobile wind lidar[J]. LASER TECHNOLOGY, 2017, 41(3): 385-390. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.016
    [6]ZHANG Li-xia, LIN Wu-mei, LIAO Zhi-jie, WANG Rui-lin. Research of algorithm to correct direction drifts of laser beam[J]. LASER TECHNOLOGY, 2012, 36(3): 386-389.
    [7]ZHOU Jian-chao, GONG Ai-ling, DU Yuan. Improvement method of measuring object deformation by using double-exposure with gray-level[J]. LASER TECHNOLOGY, 2011, 35(5): 626-628. DOI: 10.3969/j.issn.1001-3806.2011.05.014
    [8]XIONG Zhao, YUAN Xiao-dong, LIU Qing-an, TANG Can, CHENG Xiao-feng. ANSYS finite element analysis and experiment study of large aperture reflectors[J]. LASER TECHNOLOGY, 2009, 33(1): 107-109.
    [9]HUANG Pei, CAO Jian-lin, SONG Ning. Analysis of dynamic response characteristic of fiber Bragg grating[J]. LASER TECHNOLOGY, 2008, 32(6): 651-654.
    [10]Sun Xin, Zhao Zhimin. Researching of the influence on metal material strain after embedding SMA by using a speckle shearing photography[J]. LASER TECHNOLOGY, 2000, 24(2): 82-84.
  • Cited by

    Periodical cited type(1)

    1. 王春霞,刘云朋. 基于多FBG组合传感的机械臂外部干扰应力监测系统. 激光与红外. 2024(09): 1485-1490 .

    Other cited types(1)

Catalog

    Article views (22) PDF downloads (2) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return