Advanced Search
OUYANG Yefeng, CUI Jianjun, ZHANG Baowu, CHEN Kai, YANG Ning, FANG Zhenyuan. The method to extract concentric ring radius and circle center based on image inversion[J]. LASER TECHNOLOGY, 2024, 48(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.021
Citation: OUYANG Yefeng, CUI Jianjun, ZHANG Baowu, CHEN Kai, YANG Ning, FANG Zhenyuan. The method to extract concentric ring radius and circle center based on image inversion[J]. LASER TECHNOLOGY, 2024, 48(1): 135-139. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.021

The method to extract concentric ring radius and circle center based on image inversion

More Information
  • Received Date: November 27, 2022
  • Revised Date: March 15, 2023
  • Published Date: January 24, 2024
  • Aiming at the problem of accurate extraction of circle center and ring radius in non-localization interference concentric ring image, taking point light source non-localization interference concentric rings as the object, an algorithm based on image inversion for simultaneous caring of both dark and bright rings was proposed. The reference center was obtained using the Hough circle transformation after the pre-processing of smooth noise reduction. Then intensity outlines with an interval of 5 pixels in the range of [-50, 50] pixels in its x-direction and y-direction, respectively, were taken. With the inversion of each intensity contour line, accurate identification of dark and bright ring peak coordinates, respectively, was achieved. Finally, the accurate extraction of the circle center and radius of the image was achieved by averaging multiple circle parameters after circle regression fitting of obtained series circle center and radius. The results show that the center coordinates of the three bright rings and the three dark rings are very close to each other and have good reproducibility with the maximum deviation of -3.7 pixels to the mean value, i.e., a maximum relative deviation from the mean is -0.15%. The relative error of the radius-square ratio of two adjacent rings to the actual ratio varies between -4.18% and 0.36%, verifying the feasibility of the algorithm. This research is helpful in realizing automatic detection and improving measurement accuracy.
  • [1]
    谈宜东, 徐欣, 张书练, 等. 激光干涉精密测量与应用[J]. 中国激光, 2021, 48(15): 1504001.

    TAN Y D, XU X, ZHANG Sh L, et al. Precision measurement and application of laser interferometry[J]. Chinese Journal of Lasers, 2021, 48(15): 1504001(in Chinese).
    [2]
    龚文慧, 张雄星, 康家雯, 等. 级联FPI-MZI复合干涉光纤传感器双参数特性研究[J]. 激光技术, 2022, 46(5): 618-623. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.006

    GONG W H, ZHANG X X, KANG J W, et al. Research on dual-parameter characteristics of composite interference fiber sensor based on cascade FPI-MZI[J]. Laser Technology, 2022, 46(5): 618-623(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.05.006
    [3]
    马亚云, 赵冬娥, 张斌, 等. 共路外差干涉测量液晶空间光调制器相位特性[J]. 激光技术, 2021, 45(5): 614-619. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.013

    MA Y Y, ZHAO D E, ZHANG B, et al. Measurement of the phase characteristics of liquid crystal spatial light modulator based on common-path heterodyne interferometry[J]. Laser Technology, 2021, 45(5): 614-619(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.05.013
    [4]
    马丽丽, 牛明生, 苏富芳, 等. 基于单平行分束器的偏光干涉系统[J]. 激光技术, 2020, 44(3): 382-387. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.020

    MA L L, NIU M Sh, SU F F, et al. Polarization interference system based on single polarization parallel beam splitter[J]. Laser Techno-logy, 2020, 44(3): 382-387(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.03.020
    [5]
    周国全, 段玉婕, 朱增旺, 等. 基于等倾干涉与图像处理算法的流体折射率测量传感系统[J]. 物理与工程, 2021, 31(6): 17-34. DOI: 10.3969/j.issn.1009-7104.2021.06.004

    ZHOU G Q, DUAN Y J, ZHU Z W. Sensing system for measuring refractive index of fluid based on new image processing algorithms and equal-inclination interference technique[J]. Physics and Engineering, 2021, 31(6): 17-34(in Chinese). DOI: 10.3969/j.issn.1009-7104.2021.06.004
    [6]
    张晓华, 高晓娟, 赫玉会, 等. 牛顿环条纹几何参数的自动视觉检测[J]. 中国测试, 2023, 49(3): 41-46.

    ZHANG X H, GAO X J, HE Y H, et al. Automatic vision detection of geometric parameters in Newton's ring fringe[J]. China Measurement & Test, 2023, 49(3): 41-46(in Chinese).
    [7]
    周世南, 沈小燕, 李东升, 等. F-P标准具多光束干涉成像实现微小角度自校准测量[J]. 光子学报, 2022, 51(4): 0412007.

    ZHOU Sh N, SHEN X Y, LIU D Sh, et al. Self-calibration correction measurement of micro-angle based on F-P etalon multi-beam interfe-rence imaging[J]. Acta Photonica Sinica, 2022, 51(4): 0412007(in Chinese).
    [8]
    郭东琴, 陈文博, 张胜海. 迈克耳孙干涉仪非定域干涉条纹分析[J]. 大学物理, 2020, 39(3): 39-43.

    GUO D Q, CHEN W B, ZHANG Sh H. Analysis of the non-localized interference fringes produced by Michelson interferometer[J]. College Physics, 2020, 39(3): 39-43(in Chinese).
    [9]
    中国计量大学. 基于分波面干涉同心圆环的角度自溯源高精度测量方法: 114964057[P]. 2022-08-30.

    CHINA JILIANG UNIVERSITY. High-precision angle tracing mea-surement method based on divide-wave interference concentric ring: 114964057[P]. 2022-08-30(in Chinese).
    [10]
    中国计量大学. 一种量块双端面无研合自溯源光学干涉测量方法: 114993189[P]. 2022-08-30.

    CHINA JILIANG UNIVERSITY. A non-research self-traceable optical interferometry method for measuring block double end faces is presented: 114993189[P]. 2022-08-30(in Chinese).
    [11]
    刘逸飞, 苏亚, 姚晓天, 等. OCT无创血糖检测图像处理最优化方法研究[J]. 激光技术, 2023, 47(2): 178-184. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004

    LIU Y F, SU Y, YAO X T, et al. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. Laser Technology, 2023, 47(2): 178-184(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.02.004
    [12]
    薛瀚宸, 童童, 张俊武, 等. 基于MATLAB图像处理的光学干涉实验测量研究[J]. 物理与工程, 2022, 32(5): 133-137.

    XUE H Ch, TONG T, ZHANG J W, et al. Research on optical interference experiment measurement based on MATLAB image processing[J]. Physics and Engineering, 2022, 32(5): 133-137(in Chinese).
    [13]
    高铭锷, 袁鹤, 徐敏, 等. 激光干涉条纹特征提取及定中测量技术研究[J]. 光子学报, 2022, 51(2): 0212002.

    GAO M E, YUAN H, XU M, et al. Research on feature extraction of laser interference fringe and centering measurement technology[J]. Acta Photonica Sinica, 2022, 51(2): 0212002(in Chinese).
    [14]
    李忠明, 唐延甫, 李俊霖, 等. 迈克尔逊干涉条纹位移信息提取研究[J]. 电子测量技术, 2021, 44(5): 51-54.

    LI Zh M, TANG Y F, LI J L, et al. Research on displacement information extraction from Michelson interference fringes[J]. Electronic Measurement Technology, 2021, 44(5): 51-54(in Chinese).
    [15]
    张瑞峰, 刘畅. 分区间曲线拟合的干涉条纹中心点提取方法[J]. 激光与光电子学进展, 2021, 58(8): 0812002.

    ZHANG R F, LIU Ch. Interference fringe center point extraction method based on interval curve fitting[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0812002(in Chinese).
    [16]
    王刃, 张本昀, 朱新慧. 视频激光干涉牛顿环中心的实时提取技术[J]. 武汉大学学报(信息科学版), 2006, 31(11): 1031-1033.

    WANG R, ZHANG B Y, ZHU X H. Real time picking-up center point of video laser newton's ring[J]. Journal of Wuhan University(Information Science Edition), 2006, 31(11): 1031-1033(in Chinese).
    [17]
    梅启升, 王敏, 周群. 多噪声干涉条纹图像的检测方法[J]. 激光与光电子学进展, 2019, 56(12): 1210007.

    MEI Q S, WANG M, ZHOU Q. Method for detecting multi-noise interference fringe images[J]. Laser & Optoelectronics Progress, 2019, 56(12): 1210007(in Chinese).
    [18]
    TOWER D P, JUDGE T R, BRYANSTON-CROSS P J. Automatic interferogram analysis techniques applied to quasi-heterodyne holo-graphy and ESPI[J]. Optics and Lasers in Engineering, 1986, 14(4/5): 239-281.
    [19]
    沈常宇. 光学原理[M]. 第2版. 北京: 清华大学出版社, 2017: 104-108.

    SHEN Ch Y. Principles of optics[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 104-108(in Chinese).
    [20]
    张光寅. 激光束干涉法测平行平晶楔角和它的一些推广应用[J]. 物理, 1974(2): 119-122.

    ZHANG G Y. Measurement of wedge angle of parallel flat crystal by laser beam interferometry and some applications of it[J]. Physics, 1974(2): 119-122(in Chinese).

Catalog

    Article views (9) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return