Advanced Search
ZHANG Junjie, AN Yan, DONG Keyan, GAO Liang, LI Xiang, ZHANG Zihao, CHEN Yanan. Research on the technique of regulating the intensity of 2-D Airy beam array[J]. LASER TECHNOLOGY, 2024, 48(1): 97-104. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.016
Citation: ZHANG Junjie, AN Yan, DONG Keyan, GAO Liang, LI Xiang, ZHANG Zihao, CHEN Yanan. Research on the technique of regulating the intensity of 2-D Airy beam array[J]. LASER TECHNOLOGY, 2024, 48(1): 97-104. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.016

Research on the technique of regulating the intensity of 2-D Airy beam array

More Information
  • Received Date: December 18, 2022
  • Revised Date: March 21, 2023
  • Published Date: January 24, 2024
  • In order to control the intensity of the 2-D Airy beam array at the focal point, a simulation study was conducted using the principle of modulation of the Gaussian beam moving in the frequency domain. The results show that the intensity enhancement from 0.85 to 1.1 at the focal point of the 2-D Airy beam array is achieved by shifting the Gaussian beam in the frequency domain, and the operation is flexible and convenient without increasing the number of beams by repeatedly encoding the phase diaphragm to enhance the intensity of the beam at the focal point, and its effect in atmospheric turbulence is simulated, beam intensity enhancement from 0.85 to 1.03 at moderate turbulence intensity. The modulation is of research significance for the laser to resist atmospheric turbulence in the atmosphere and improve the quality of laser communication.
  • [1]
    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901. DOI: 10.1103/PhysRevLett.99.213901
    [2]
    SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981. DOI: 10.1364/OL.32.000979
    [3]
    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209. DOI: 10.1364/OL.33.000207
    [4]
    WANG X Y, TU J L, YU X, et al. Optimizing ballistic motion of partially coherent multiple Airy beams by quadratic and linear phases[J]. Annalen der Physik, 2021, 533(9): 2100165. DOI: 10.1002/andp.202100165
    [5]
    LI D H, BONGIOVANNI D, GOUTSOULAS M, et al. Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams[J]. OSA Continuum, 2020, 3(6): 1525-1535. DOI: 10.1364/OSAC.391878
    [6]
    ZHANG Z, LIANG X L, GOUTSOULAS M, et al. Robust propagation of pin-like optical beam through atmospheric turbulence[J]. APL Photonics, 2019, 4(7): 076103. DOI: 10.1063/1.5095996
    [7]
    LIU X, XIA D N, MONFARED Y E, et al. Generation of novel partially coherent truncated Airy beams via Fourier phase processing[J]. Optics Express, 2020, 28(7): 9777-9785. DOI: 10.1364/OE.390477
    [8]
    WANG Y F, JIANG Y F. Dual autofocusing circular Airy beams with different initial launch angles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278: 108010. DOI: 10.1016/j.jqsrt.2021.108010
    [9]
    EFREMIDIS N K, CHEN Z G, MORDECHAI S, et al. Airy beams and accelerating waves: An overview of recent advances[J]. Optica, 2019, 6(5): 686-701. DOI: 10.1364/OPTICA.6.000686
    [10]
    张雅凯, 郭苗军, 李晋红, 等. 扭曲多高斯光束在梯度折射率光纤中的传输特性[J]. 激光技术, 2022, 46(5): 594-600. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.003

    ZHANG Y K, GUO M J, LI J H, et al. Propagation characteristics of twisted multi-Gaussian beams in gradient index fibers[J]. Laser Technology, 2022, 46(5): 594-600 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.05.003
    [11]
    王埼臻, 田恺婧, 夏雄平. 高斯型激光圆孔衍射中的光束畸变调控研究[J]. 应用光学, 2022, 43(1): 119-123.

    WANG Q Zh, TIAN K J, XIA X P. Beam distortion regulation in Gaussian lasercircular aperture diffraction[J]. Journal of Applied Optics, 2022, 43(1): 119-123(in Chinese).
    [12]
    EFREMIDIS N K, CHRISTODOULIDES D N. Abruptly autofocusing waves[J]. Optics Letters, 2010, 35(23): 4045-4047. DOI: 10.1364/OL.35.004045
    [13]
    PAPAZOGLOU D G, EFREMIDIS N K, CHRISTODOULIDES D N, et al. Observation of abruptly autofocusing waves[J]. Optics Letters, 2011, 36(10): 1842-1844. DOI: 10.1364/OL.36.001842
    [14]
    张泽, 刘京郊, 张鹏, 等. 多艾里光束合成自聚焦光束的实验实现[J]. 物理学报, 2013, 62(3): 034209.

    ZHANG Z, LIU J J, ZHANG P, et al. Generation of autofocusing beams with multi-Airy beams[J]. Acta Physica Sinica, 2013, 62(3): 034209 (in Chinese).
    [15]
    HU Y, ZHANG P, LOU C B, et al. Optimal control of the ballistic motion of Airy beams[J]. Optics Letters, 2010, 35(13): 2260-2262. DOI: 10.1364/OL.35.002260
    [16]
    CHEN C Y, YANG H M, KAVEHRAD M, et al. Propagation of radial Airy array beams through atmospheric turbulence[J]. Optics and Lasers in Engineering, 2014, 52(1): 106-114.
    [17]
    EZ-ZARIY L, HRICHA Z, BELAFHAL A. Novel finite Airy array beams generated from Gaussian array beams illuminating an optical Airy transform system[J]. Progress in Electromagnetics Research, 2016, M49: 41-50.
    [18]
    吴鹏飞, 柯熙政, 宋强强. 自聚焦阵列艾里光束的实验实现[J]. 中国激光, 2018, 45(6): 0605002.

    WU P F, KE X Zh, SONG Q Q. Realization of experiment on auto-focusing array Airy beam[J]. Chinese Journal of Lasers, 2018, 45(6): 0605002 (in Chinese).
    [19]
    DAFNE A, ÓSCAR M, PABLO V. Abruptly autofocusing beams from phase perturbations having forced symmetry[J]. Optics Letters, 2019, 44(15): 3733-3736. DOI: 10.1364/OL.44.003733
    [20]
    XU D L, LIU Y J, MO Z W, et al. Shaping autofocusing Airy beams through the modification of Fourier spectrum[J]. Optics Express, 2022, 30(1): 232-242. DOI: 10.1364/OE.444396
    [21]
    WANG L, JI X L, LI X Q, et al. Focusing and self-healing characteristics of Airy array beams propagating in self-focusing media[J]. Applied Physics, 2019, B125(9): 165.
    [22]
    鲁强. 基于LCOS的Airy光束阵列生成及其光强闪烁特性的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017: 35-47.

    LU Q. Generation of Airy beam arrays based on a LCOS device and research on their scintillation characteristics[D]. Changchun: Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences, 2017: 35-47(in Chinese).
    [23]
    施瑶瑶, 吴彤, 刘友文, 等. 艾里光束自弯曲性质的控制[J]. 光子学报, 2013, 42(12): 1401-1407.

    SHI Y Y, WU T, LIU Y W, et al. Control of self-bending Airy beams[J]. Acta Photonica Sinica, 2013, 42(12): 1401-1407(in Chinese).
    [24]
    姜楠, 李晓英, 牛春晖, 等. 大气湍流对激光空间传输特性影响的实验研究[J]. 激光技术, 2022, 46(5): 708-712. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.022

    JIANG N, LI X Y, NIU Ch H, et al. Experimental study on the influence of atmospheric turbulence on laser spatial transmission characteristics[J]. Laser Technology, 2022, 46(5): 708-712(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.05.022
    [25]
    郑崇辉, 王天枢, 刘哲绮, 等. 深度迁移学习方法识别轨道角动量光束[J]. 光电工程, 2022, 49 (6): 210409.

    ZHENG Ch H, WANG T Sh, LIU Zh Q, et al. Deep transfer learning method to identify orbital angular momentum beams[J]. Opto-Electronic Engineering, 2022, 49(6): 210409 (in Chinese).
    [26]
    王鑫. Airy光束自聚焦特性研究[D]. 杭州: 浙江农林大学, 2022: 51-57.

    WANG X. Research on self-focusing characteristics of Airy beam[D]. Hangzhou: Zhejiang A & F University, 2022: 51-57(in Chinese).
    [27]
    陈鸣. 非Kolmogorov湍流对激光大气传输影响的模拟分析[D]. 长沙: 国防科技大学, 2017: 12-17.

    CHEN M. Numerical analysis of the influence of non-Kolmogorov turbulence on laser propagation in atmosphere[D]. Changsha: National University of Defense Technology, 2017: 12-17(in Chinese).

Catalog

    Article views (7) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return