Advanced Search
GUAN Lizhen, WANG Yuhang, LIU Jiawei, NIE Pengcheng, YAN Yupeng, SONG Xice, YU Xianlun. Analysis of the stimulated Brillouin scattering threshold of coupling ring-assisted multi-mode fiber[J]. LASER TECHNOLOGY, 2024, 48(1): 60-64. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.010
Citation: GUAN Lizhen, WANG Yuhang, LIU Jiawei, NIE Pengcheng, YAN Yupeng, SONG Xice, YU Xianlun. Analysis of the stimulated Brillouin scattering threshold of coupling ring-assisted multi-mode fiber[J]. LASER TECHNOLOGY, 2024, 48(1): 60-64. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.010

Analysis of the stimulated Brillouin scattering threshold of coupling ring-assisted multi-mode fiber

More Information
  • Received Date: November 27, 2022
  • Revised Date: January 10, 2023
  • Published Date: January 24, 2024
  • In order to reduce inter-mode crosstalk, a coupling ring-assisted multi-mode fiber structure was proposed, and the mathematical model of its excited Brillouin scattering gain spectrum was established. Theoretically, the excited Brillouin scattering threshold of the coupling ring-assisted multi-mode fiber was analyzed, as well as the effects of fiber parameters and modes on the excited Brillouin scattering spectral threshold. The results show that the coupling ring-assisted structure increases the effective refractive index difference to 1.75 times that of the conventional type step-index multi-mode fiber. The threshold of the excited Brillouin scattering spectrum in coupling ring-assisted multi-mode fiber follows the increase of the fiber length from a sharp decrease to a slow one and finally converges to a constant value of 30 dBm at 18 km, which is higher than that of the conventional step refractive index multi-mode fiber. Other things being equal, the threshold increases linearly with the attenuation coefficient, the effective cross-sectional area of the fiber core, and the mode order of the fiber; it increases exponentially with the increase of the core radius. This study provides a theoretical reference for enhancing the transmission distance and channel capacity of fiber optic communication systems.
  • [1]
    RAMANIUK A, KACZOROWSKI J, NOWAKOWSKI P, et al. Advantages of using few-mode and multimode fibers in phase sensitive OTDR measurement system due to the modulation instability deferment[J]. Optical Fiber Technology, 2022, 74: 103086. DOI: 10.1016/j.yofte.2022.103086
    [2]
    李永倩, 刘艳蕊, 王磊. 多模光纤布里渊散射效应研究进展[J]. 光通信技术, 2021, 45(2): 10-15.

    LI Y Q, LIU Y R, WANG L. Research progress on Brillouin scattering effect in multimode optical fiber[J]. Optical Communication Technology, 2021, 45(2): 10-15(in Chinese).
    [3]
    王振伟, 孔勇, 丁伟, 等. 复合光纤对φ-OTDR振动传感远程敏感[J]. 激光技术, 2021, 45(4): 436-440. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.005

    WANG Zh W, KONG Y, DING W, et al. Composite fiber is remotely sensitive to φ-OTDR vibration sensing[J]. Laser Technology, 2021, 45(4): 436-440(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.005
    [4]
    李虎, 郭子龙, 杨文婷, 等. 空芯光纤多模干涉型光纤液位传感技术研究[J]. 激光技术, 2022, 46(1): 120-124. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.012

    LI H, GUO Z L, YANG W T, et al. Research on multimode interfe-rometric fiber level sensing technology with hollow core fiber[J]. Laser Technology, 2022, 46(1): 120-124(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.01.012
    [5]
    张家强, 张敏, 尹金德, 等. 3 μm波段低损耗抗弯曲反谐振空芯光纤设计[J]. 激光与光电子学进展, 2021, 58(17): 1723001.

    ZHANG J Q, ZHANG M, YIN J D, et al. Design of low loss hollow-core anti-resonance fiber for 3μm spectral region[J]. Laser & Opto-electronics Progress, 2021, 58(17): 1723001(in Chinese).
    [6]
    DAI Y, WANG Y J, TIAN F, et al. Design and optimization of he-terogeneous few-mode multi-core fiber with graded-index profile and trench/rod assisted[C]//2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). New York, USA: IEEE, 2020: 1-3.
    [7]
    GE D W, GAO Y Y, YANG Y, et al. A 6-LP-mode ultralow-modal-crosstalk double-ring-core FMF for weakly-coupled MDM transmission[J]. Optics Communications, 2019, 451: 97-103. DOI: 10.1016/j.optcom.2019.06.015
    [8]
    刘畅, 裴丽, 解宇恒, 等. 异质结构的低串扰少模多芯光纤设计[J]. 中国激光, 2020, 47(11): 1106004.

    LIU Ch, PEI L, XIE Y H, et al. Design of low crosstalk few mode multi-core fiber based on heterogeneous structure[J]. Chinese Journal of Lasers, 2020, 47(11): 1106004 (in Chinese).
    [9]
    ZUO M Q, GE D W, LIU J X, et al. Long-haul intermodal-MIMO-free MDM transmission based on a weakly coupled multiple-ring-core few-mode fiber[J]. Optics Express, 2022, 30(4): 5868-5878. DOI: 10.1364/OE.451971
    [10]
    吕欢祝, 余明芯, 钟文博, 等. 大模场低损耗光子晶体光纤的研究与设计[J]. 激光技术, 2021, 45(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.012

    LÜ H Zh, YU M X, ZHONG W B, et al. Research and design of low-loss photonic crystal fibers with large mode fields[J]. Laser Technology, 2021, 45(2): 196-201(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.02.012
    [11]
    QIU X, WU B J, LIU Y W, et al. Study on mode coupling characteristics of multimode magneto-optical fibers[J]. Optics Communications, 2020, 456: 124707. DOI: 10.1016/j.optcom.2019.124707
    [12]
    ZHANG Z L, LU Y G, PAN Y H, et al. Trench-assisted multimode fiber used in Brillouin optical time domain sensors[J]. Optics Express, 2019, 27(8): 11396-11405. DOI: 10.1364/OE.27.011396
    [13]
    李川, 陈安涛, 赵文娟, 等. 三谱线、高峰值功率窄线宽纳秒光纤激光器[J]. 激光技术, 2019, 43(6): 753-756. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.004

    LI Ch, CHEN A T, ZHAO W J, et al. Tri-spectral, high peak power narrow linewidth nanosecond fiber laser[J]. Laser Technology, 2019, 43(6): 753-756(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.06.004
    [14]
    李天夫, 巴德欣, 周登望, 等. 前向受激布里渊散射光纤传感研究进展[J]. 光电工程, 2022, 49(9): 220021.

    LI T F, BA D X, ZHOU D W, et al. Recent progress in optical fiber sensing based on forward stimulated Brillouin scattering[J]. Opto-Electronic Engineering, 2022, 49(9): 220021(in Chinese).
    [15]
    LÜ H B, ZHOU P, WANG X L, et al. Theoretical and numerical study of the threshold of stimulated Brillouin scattering in multimode fibers[J]. Journal of Lightwave Technology, 2015, 33(21): 4464-4470. DOI: 10.1109/JLT.2015.2476364
    [16]
    KHUDYAKOV M M, LIKHACHEV M E, BUBNOV M M, et al. Three layer fiber with high stimulated Brillouin scattering threshold[J]. Proceedings of the SPIE, 2017, 10083: 193-201.
    [17]
    CHEN W Ch, HU G J, LIU F W, et al. Threshold for stimulated Brillouin scattering in few-mode fibers[J]. Applied Optics, 2019, 58(15): 4105-4110. DOI: 10.1364/AO.58.004105
    [18]
    LEI P, ZHANG C B, XU M Y, et al. Manipulating stimulated Bri-llouin scattering produced gain near its threshold via slow intensity modulation[J]. IEEE Photonics Journal, 2021, 13(5): 1-5.
    [19]
    CHEN C W, WISAL K, AHMADI P, et al. Suppressing stimulated Brillouin scattering by selective mode excitation in multimode fibers[C]//CLEO: QELS Fundamental Science. Washington DC, USA: Optica Publishing Group, 2022: FF2L. 3.
    [20]
    KASAHARA M, SAITOH K, SAKAMOTO T, et al. Design of three-spatial-mode ring-core fiber[J]. Journal of Lightwave Techno-logy, 2014, 32(7): 1337-1343. DOI: 10.1109/JLT.2014.2304732
    [21]
    CHE X X, ZHAO L J, XU Zh N, et al. Research and comparison of Brillouin characteristics of single-mode fiber, few-mode fiber and multi-mode fiber[J]. Journal of Physics: Conference Series, 2020, 1650(2): 022022. DOI: 10.1088/1742-6596/1650/2/022022
  • Related Articles

    [1]WANG Zhenwei, KONG Yong, DING Wei, WU Hu, LI Hua. Composite optical fiber bring about remote sensitive to vibration of φ-OTDR[J]. LASER TECHNOLOGY, 2021, 45(4): 436-440. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.005
    [2]ZHANG Cong, YU Wenfeng, XIA Min, YANG Chunhua. Characteristics of optical fiber stimulated Brillouin scattering signal[J]. LASER TECHNOLOGY, 2016, 40(3): 363-366. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.013
    [3]HE Xing-kai, FENG Li-tian, SHENG Qi-hao, WU Bo, LAN Ge, ZHOU Ding-fu. Experimental study about effect of stimulated Brillouin scattering in single frequency pulsed fiber amplifiers[J]. LASER TECHNOLOGY, 2012, 36(2): 191-193,197. DOI: 10.3969/j.issn.1001-3806.2012.02.011
    [4]YANG Chun-bo, LENG Jin-yong, LU Qi-sheng. Stimulated Brillouin scattering in Yb3+-doped double clad single-frequency fiber amplifier[J]. LASER TECHNOLOGY, 2011, 35(1): 117-121. DOI: 10.3969/j.issn.1001-3806.2011.01.032
    [5]ZHOU Lei, NING Ji-ping, CHEN Cheng, HAN Qun, ZHANG Wei-yi, WANG Jun-tao. Stimulated Brillouin scattering in Er/Yb co-doped fiber pulse amplifiers[J]. LASER TECHNOLOGY, 2009, 33(5): 482-485. DOI: 10.3969/j.issn.1001-3806.2009.05.010
    [6]ZHANG Liang, WANG Zhi-yong, ZHANG Hui, YAO Shun, CAO Ying-hua, ZUO Tie-chuan. Study on Q-switched fiber laser based on stimulated Brillouin scattering[J]. LASER TECHNOLOGY, 2008, 32(1): 44-46,49.
    [7]WANG Shuang-yi, LIN Dian-yang, WANG Chao, . Recent progress of fiber beam combination[J]. LASER TECHNOLOGY, 2005, 29(6): 657-661.
    [8]DONG Yong-kang, HE Wei-ming, . Brillouin fiber-optic ring laser and its applications[J]. LASER TECHNOLOGY, 2004, 28(5): 498-502.
    [9]Zhang Aihong, Jiang Yunqiu, Wang Qingyan, . Experimental investigation on SBS phase conjugation in multi-mode quartz fiber[J]. LASER TECHNOLOGY, 2003, 27(3): 240-242.
    [10]Jiao Mingxing, Zhang Shulian, Liang Jinwen, Wei Chaojiong, Zha Kaide. Direct coupling of high-power LD to the multi mode optical fiber[J]. LASER TECHNOLOGY, 1997, 21(2): 77-80.
  • Cited by

    Periodical cited type(4)

    1. 崔文超, 郭瑞民, 王德发, 董贺伟. 分布反馈激光器温度与电流控制研究. 激光技术. 2019(04): 1-5 . 本站查看
    2. 陈垚至. 混沌激光通信网络波分复用传输系统设计. 激光杂志. 2018(10): 96-101 .
    3. 吴艳玲, 唐穗欣. 激光传感器的机器人运动控制研究. 激光杂志. 2017(01): 127-130 .
    4. 苏文芝, 申玉霞. 光纤信道混沌激光通信故障的提取与识别. 激光杂志. 2017(01): 144-147 .

    Other cited types(0)

Catalog

    Article views (7) PDF downloads (8) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return