Advanced Search
ZHENG Shuaifeng, WANG Shangdong, ZHANG Chenyi, WANG Lunwei. Extraction and classification of urban road marking lines based on point cloud features[J]. LASER TECHNOLOGY, 2024, 48(1): 27-33. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.005
Citation: ZHENG Shuaifeng, WANG Shangdong, ZHANG Chenyi, WANG Lunwei. Extraction and classification of urban road marking lines based on point cloud features[J]. LASER TECHNOLOGY, 2024, 48(1): 27-33. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.005

Extraction and classification of urban road marking lines based on point cloud features

More Information
  • Received Date: November 20, 2022
  • Revised Date: January 12, 2023
  • Published Date: January 24, 2024
  • In order to solve the problem of the low value of road marking line extraction integrity and accuracy based on vehicle-mounted light detection and ranging(LiDAR) point cloud data, a fast road marking line extraction method based on multiple features of the point cloud was proposed. Based on the strength information, geometric information, and semantic information of urban road marking lines, combined with the strength feature, elevation feature, and point density feature of the road surface point cloud, multiple geographic reference images were generated, and the feature extraction and filling of the multiple feature images were carried out, and then the Ostu algorithm and Alpha shapes algorithm were used to achieve the precise extraction of the road marking line point cloud. According to the geometric and semantic information of the marking line and the model matching scheme, the fine classification of the marking line was realized. The theoretical analysis and experimental verification were carried out, and the point cloud data of a city road in Australia was obtained. The results show that the accuracy of the extracted short dotted line, zebra line, one-way steering arrow and, the long dotted line is higher than 96%, the recall rate is 91% and above, and the comprehensive evaluation index is 94% and above. The study has contributed to the research in the field of driverless driving and also provided certain reference values for the construction of urban digital.
  • [1]
    赵焱. 基于车载LiDAR数据的高精地图道路要素提取[D]. 武汉: 武汉大学, 2020.

    ZHAO Y. Extraction of road elements in high-definition maps based on vehicle LiDAR data[D]. Wuhan: Wuhan University, 2020(in Chinese).
    [2]
    王腾, 兰青, 杨默含, 等. 点云反射强度道路标识线角点提取方法[J]. 激光杂志, 2020, 41(4): 76-80.

    WANG T, LAN Q, YANG M H, et al. Corner detection of marking line based on point cloud reflection intensity[J]. Laser Journal, 2020, 41(4): 76-80(in Chinese).
    [3]
    YAO L B, QIN Ch C, CHEN Q Ch, et al. Automatic road marking extraction and vectorization from vehicle-borne laser scanning data[J]. Remote Sensing, 2021, 13(13): 2612. DOI: 10.3390/rs13132612
    [4]
    YANG B S, FANG L N, LI Q Q, et al. Automated extraction of road markings from mobile LiDAR point clouds[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(4): 331-338.
    [5]
    GUAN H Y, LI J, YU Y T, et al. Using mobile laser scanning data for automated extraction of road markings[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1): 93-107.
    [6]
    KUMAR P, MCELHINNEY C P, LEWIS P, et al. Automated road markings extraction from mobile laser scanning data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 32: 125-137. DOI: 10.1016/j.jag.2014.03.023
    [7]
    LIU L R, MA H, CHEN S Y, et al. Image-translation-based road marking extraction from mobile laser point clouds[J]. IEEE Access, 2020, 8: 64297-64309. DOI: 10.1109/ACCESS.2020.2985413
    [8]
    ZEYBEK M. Extraction of road lane markings from mobile LiDAR data[J]. Transportation Research Record, 2021, 2675(5): 30-47. DOI: 10.1177/0361198120981948
    [9]
    YAN L, LIU H, TAN J X, et al. Scan line based road marking extraction from mobile LiDAR point clouds[J]. Sensors, 2016, 16(6): 903. DOI: 10.3390/s16060903
    [10]
    YU Y T, LI J, GUAN H Y, et al. Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8(2): 709-726.
    [11]
    CHEN X, KOHLMEYER B, STROILA M, et al. Next generation map making: Geo-referenced ground-level LiDAR point clouds for automatic retro-reflective road feature extraction[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, USA: Ouri Wolfson, 2009: 488-491.
    [12]
    邹晓亮, 缪剑, 郭锐增, 等. 移动车载激光点云的道路标线自动识别与提取[J]. 测绘与空间地理信息, 2012, 35(9): 5-8.

    ZOU X L, MIAO J, GUO R Z, et al. Automatic road marking detection and extraction based on LiDAR point clouds from vehicle-borne MMS[J]. Geomatics & Spatial Information Technology, 2012, 35(9): 5-8(in Chinese).
    [13]
    马浩, 裴智惠, 李婷婷. 移动激光扫描数据的道路标线自动提取[J]. 测绘科学, 2019, 44(6): 217-221.

    MA H, PEI Zh H, LI T T. Automatic extraction of road markings from mobile laser scanning data[J]. Science of Surveying and Mapping, 2019, 44(6): 217-221(in Chinese).
    [14]
    YE Ch M, LI J, JIANG H, et al. Semi-automated generation of road transition lines using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(5): 1877-1890.
    [15]
    侯德藻, 何勇, 唐琤琤, 等. 道路交通标志和标线第三部分: 道路交通标线: GB 5768.3-2009[S]. 北京: 交通部公路科学研究院, 2009.

    HOU D Z, HE Y, TANG Zh Zh, et al. Road traffic signs and markings—Part 3: Road traffic markings: GB 5768.3-2009[S]. Beijing: Highway Science Research Institute, Ministry of Communications, 2009(in Chinese).
    [16]
    刘国栋, 刘佳, 刘浪. 一种基于机载LiDAR数据的山区道路提取方法[J]. 激光技术, 2022, 46(4): 466-473. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.005

    LIU G D, LIU J, LIU L. A mountain road extraction method based on airborne LiDAR data[J]. Laser Technology, 2022, 46(4): 466-473(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.005
    [17]
    曾妮红. 基于车载LiDAR点云数据的滤波及道路标识线提取研究[D]. 武汉: 中国地质大学, 2016: 24-31.

    ZENG N H. The research on filtering and extraction of road marking from vehicle-borne laser scanning point clouds data[D]. Wuhan: China University of Geosciences, 2016: 24-31(in Chinese).
    [18]
    张莹, 黄影平, 郭志阳, 等. 基于点云与图像交叉融合的道路分割方法[J]. 光电工程, 2021, 48(12): 210340.

    ZHANG Y, HUANG Y P, GUO Zh Y, et al. Point cloud-image data fusion for road segmentation[J]. Opto-Electronic Engineering, 2021, 48(12): 210340(in Chinese).
    [19]
    杨必胜, 魏征, 李清泉, 等. 面向车载激光扫描点云快速分类的点云特征图像生成方法[J]. 测绘学报, 2010, 39(5): 540-545.

    YANG B Sh, WEI Zh, LI Q Q, et al. A classification-oriented method of feature image generation for vehicle-borne laser scanning point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 540-545(in Chinese).
    [20]
    刘硕, 刘如飞, 柴永宁. 一种基于结构特征匹配的道路标识线分类方法[J]. 地理空间信息, 2021, 19(3): 14-17.

    LIU Sh, LIU R F, CHAI Y N. Road marker line classification method based on structural characteristic match[J]. Geospatial Information, 2021, 19(3): 14-17(in Chinese).
    [21]
    KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. DOI: 10.1016/0734-189X(85)90125-2
    [22]
    苗龙元, 于正林, 王震. 基于连通区域标记的区域填充算法[J]. 长春理工大学学报(自然科学版), 2018, 41(4): 114-117.

    MIAO L Y, YU Zh L, WANG Zh. Regional filling algorithm based on connected region labeling[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2018, 41(4): 114-117(in Chinese).
    [23]
    杨振, 鲁欣宇, 武永斌, 等. 结合城区道路特征与点云回波信息的道路标识线提取[J]. 测绘与空间地理信息, 2020, 43(11): 193-196.

    YANG Zh, LU X Y, WU Y B, et al. Extraction of road marks based on urban road characteristics and point cloud echo information[J]. Geomatics & Spatial Information Technology, 2020, 43(11): 193-196(in Chinese).
    [24]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. DOI: 10.1109/TSMC.1979.4310076
    [25]
    EDELSBRUNNER H, KIRKPATRICK D, SEIDEL R. On the shape of a set of points in the plane[J]. IEEE Transactions on Information Theory, 1983, 29(4): 551-559. DOI: 10.1109/TIT.1983.1056714
  • Cited by

    Periodical cited type(1)

    1. 胥晗,孙科学,徐荣青. 基于LSPR效应的金属-半导体-金属光电探测器性能的研究. 激光与光电子学进展. 2025(03): 87-93 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return