Citation: | DAI Jinke, ZHENG Suzhen, SU Juan. 3-D surface reconstruction based on structured light and deep neural network[J]. LASER TECHNOLOGY, 2023, 47(6): 831-840. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.015 |
[1] |
MIN L, LI D, DONG Sh. 3D surface roughness measurement based on SFS method[C]//2017 8th International Conference on Intelligent Human-Machine Systems and Cybernetics(IHMSC). Hangzhou, Ch-ina: IEEE, 2017: 484-488.
|
[2] |
郭小凡, 张启灿. 应用BP神经网络重建物体3维面形[J]. 激光杂志, 2019, 40(1): 40-41.
GUO X F, ZHANG Q C. Three-dimensional shape reconstruction based on BP neural network[J]. Laser Journal, 2019, 40(1): 40-41(in Chinese).
|
[3] |
GERON A. Hands-on machine learning with scikit-learn, keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems[M]. 2th ed. Sebastopol, USA: O'Reilly Media, 2019: 220-226.
|
[4] |
THEOBALD O. Machine learning for absolute beginners: A plain english introduction[M]. Washington DC, USA: Amazon Publishing, 2019: 66-68.
|
[5] |
LIU Y Sh, WANG R M, ZHAO J J, et al. A novel robust variable selection algorithm for multilayer perceptron[C]//2022 13th Asian Control Conference(ASCC). Jeju, Korea: IEEE, 2022: 470-475.
|
[6] |
NIELSEN M. Neural networks and deep learning[M]. Berlin, Germany: Springer Publishing, 2019: 113-116.
|
[7] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2017: 35-48.
ZHOU Zh H. Machine learning[M]. Beijing: Tsinghua University Press, 2017: 35-48(in Chinese).
|
[8] |
KO B S, KIM H G, OH K J, et al. Controlled dropout: A different approach to using dropout on deep neural network[C]//2017 IEEE International Conference on Big Data and Smart Computing (BigComp). New York, USA: IEEE, 2017: 358-362.
|
[9] |
XIE Sh J, LI L. Improvement and application of deep belief network based on sparrow search algorithm[C]//2021 IEEE International Conference on Advances in Electrical Engineering and Computer A-pplications (AEECA). New York, USA: IEEE, 2021: 705-708.
|
[10] |
李蒙, 张翠, 童杏林. 基于BP算法和FBG传感的复合材料冲击定位检测技术[J]. 激光技术, 2022, 46(3): 320-325. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.005
LI M, ZHANG C, TONG X L. Composite material impact location detection technology based on BP algorithm and FBG sensing[J]. Laser Technology, 2022, 46(3): 320-325(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.005
|
[11] |
AYHAN T, ALTUN M. Approximate fully connected neural network generation[C]//2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). New York, USA: IEEE, 2018: 93-96.
|
[12] |
YAN D X, AN Y, LI G H, et al. High-resolution reconstruction of FMT based on elastic net optimized by relaxed ADMM[J]. IEEE Transactions on Biomedical Engineering(Early Access), 2022, 10(11): 1-10.
|
[13] |
GONG F X, GONG T R, YU Y, et al. An electricity load forecasting algorithm based on kernel lasso regression[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC). New York, USA: IEEE, 2021: 1-4.
|
[14] |
LI D, GE Q F, ZHANG P Ch, et al. Ridge regression with high order truncated gradient descent method[C]//2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). New York, USA: IEEE, 2020: 252-255.
|
[15] |
LIU L, LUO Y H, SHEN X, et al. β-Dropout: A unified dropout[J]. IEEE Access, 2019, 7(3): 36140-36153.
|
[16] |
SMITH R, KANDIMALLA V A K, REDDY G D. Predicting diabetes using outlier detection and multilayer perceptron with optimal stochastic gradient descent[C]//2020 IEEE India Council International Subsections Conference (INDISCON). New York, USA: IEEE, 2022: 51-56.
|
[17] |
PATTERSON J, GIBSON A. Deep learning: A practitioners a-pproach[M]. Sebastopol, USA: O'Reilly Published, 2019: 402-406.
|
[18] |
KHANIKI M A L, HADI M B, MANTHOURI M. Feedback error learning controller based on RMSprop and salp swarm algorithm for automatic voltage regulator system[C]//2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). New York, USA: IEEE, 2020: 425-430.
|
[19] |
古德费洛I, 本吉奥Y. 深度学习[M]. 北京: 人民邮电出版社, 2017: 53-79.
GOODFELLOW I, BENGIO Y. Deep learning[M]. Beijing: Posts Telecom Press, 2017: 53-79(in Chinese).
|
[20] |
马园园, 王立地. 神经网络的光电测量系统畸变校正和优化研究[J]. 激光杂志, 2017, 37(11): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201611011.htm
MA Y Y, WANG L D. Study on distortion correction and optimization of optical measurement system based on neural network[J]. Laser Journal, 2017, 37(11): 42-45(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201611011.htm
|
[21] |
GERON A. Hands-on machine learning with scikit-learn and tensorflow[M]. 2th ed. Sebastopol, USA: O'Reilly Media, 2020: 576-579.
|
1. |
胡泽雄,游利兵,寸超,王宏伟,范军,王琪,张艳琳,方晓东. 准分子激光低抖动延时同步系统. 量子电子学报. 2023(01): 69-78 .
![]() | |
2. |
龚玮玮,张进,张丽伟. 基于嵌入式技术的准分子激光器智能控制系统. 激光杂志. 2021(10): 181-185 .
![]() | |
3. |
王晨,梁勖,林颖,方晓东. MOPA结构准分子激光同步触发设计. 红外与激光工程. 2021(11): 165-170 .
![]() | |
4. |
朱志坚,薛竣文,王玉珂,孙鲁,苏秉华. 基于MOPA结构的1064nm单频光纤激光器. 激光技术. 2019(06): 800-803 .
![]() | |
5. |
王景景,符志军. 激光陀螺仪的机械抖动控制技术分析和研究. 激光杂志. 2019(12): 118-122 .
![]() | |
6. |
谢正兰,万川梅. 单向链式网络的激光同步技术研究. 激光杂志. 2018(03): 146-150 .
![]() | |
7. |
徐学红,栗科峰. 激光接收器的抖动抑制优化控制方法. 激光杂志. 2017(06): 136-139 .
![]() |