Advanced Search
WU Junjie, WANG Yaohui, XU Zuyin, REN Jiali, ZHANG Boyi. Research on airport boundary layer height based on Doppler LiDAR[J]. LASER TECHNOLOGY, 2023, 47(6): 778-785. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.008
Citation: WU Junjie, WANG Yaohui, XU Zuyin, REN Jiali, ZHANG Boyi. Research on airport boundary layer height based on Doppler LiDAR[J]. LASER TECHNOLOGY, 2023, 47(6): 778-785. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.008

Research on airport boundary layer height based on Doppler LiDAR

More Information
  • Received Date: August 28, 2022
  • Revised Date: January 10, 2023
  • Published Date: November 24, 2023
  • In order to explore the height variation characteristics of the boundary layer over Guanghan Airport, the carrier noise ratio data of Doppler light detection and ranging (LiDAR) was used to invert the boundary layer height over the airport by gradient method, wavelet covariance method, and standard variance method. The calculated data through these methods was then compared with that of the L-band sounding and aircraft detection data. The results show that boundary layer information can be captured well by these methods, and good consistency in the recognition of convective boundary pause can be observed. However, the gradient method shows obvious advantages in accuracy, continuity and stability in the recognition of residual layer pause and stable boundary top layer. During the observation period, the height of the convective boundary layer and the residual layer is about 2000 m, and the height of the stable boundary layer is between 100 m~200 m. The boundary layer height of LiDAR inversion was verified by aircraft detection data and sonde data. Due to the turbulence in the boundary layer, the material boundary layer and the thermal boundary layer were significantly different at certain times. The study can provide early warning information for flight training and better ensure flight safety.
  • [1]
    蒋兴文, 李跃清, 王鑫, 等. 青藏高原东部及下游地区冬季边界层的观测分析[J]. 高原气象, 2009, 28(4): 754-762. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904005.htm

    JANG X W, LI Y Q, WANG X, et al. Observation and analysis of winter boundary layer in the eastern and lower reaches of the Tibetan Plateau[J]. Plateau Meteorology, 2009, 28(4): 754-762(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904005.htm
    [2]
    STULL R B. An Introduction to boundary layer meteorology[M]. 2nd ed. Toronto, Canada: Kluwer Academic, 1989: 126.
    [3]
    SANDIFORD K, COLIER C. A proposal for the measurement of boundary layer temperature gradient using Doppler lidar[J]. Atmospheric Science Letters, 2000, 1(2): 256-267.
    [4]
    张宏昇, 张小曳, 李倩惠, 等. 大气边界层高度确定及应用研究进展[J]. 气象学报, 2020, 78(3): 522-536. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003012.htm

    ZHANG H Sh, ZHANG X Y, LI Q H, et al. Research progress on the determination and application of atmospheric boundary layer[J]. Acta Meteorologica Sinica, 2020, 78(3): 522-536(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003012.htm
    [5]
    WANG N, CAO X, ZHANG L, et al. Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation[J]. Atmospheric Measurement Techniques, 2012, 5(8): 1965-1972. DOI: 10.5194/amt-5-1965-2012
    [6]
    赵鸣, 苗曼倩, 金皓, 等. 一种估计混合层高度的客观方法[J]. 气象科学, 1987(4): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198704002.htm

    ZHAO M, MIAO M Q, JIN H, et al. An objective method for estimating the height of the mixing layer[J]. Scientia Meteorologica Sinica, 1987(4): 20-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX198704002.htm
    [7]
    吴俊杰, 方璘王昊, 张中锋. 面向机场的多普勒激光雷达风场反演技术研究[J]. 航空计算技术, 2020, 50(6): 1-4. DOI: 10.3969/j.issn.1671-654X.2020.06.001

    WU J J, FANG LIN W H, ZHANG Zh F. Research on Doppler LiDAR wind field inversion technology for airports[J]. Aeronautical Computing Technique, 2020, 50(6): 1-4(in Chinese). DOI: 10.3969/j.issn.1671-654X.2020.06.001
    [8]
    赵鸣, 苗曼倩, 王彦昌. 边界层气象学教程[M]. 北京: 气象出版社, 1991: 366-367.

    ZHAO M, MIAO M Q, WANG Y Ch. Boundary layer meteorology tutorial[M]. Beijing: Meteorological Press, 1991: 366-367(in Chinese).
    [9]
    徐桂荣, 崔春光, 周志敏, 等. 利用探空资料估算青藏高原及下游地区大气边界层高度[J]. 暴雨灾害, 2014, 33(3): 217-227. DOI: 10.3969/j.issn.1004-9045.2014.03.004

    XU G R, CUI Ch G, ZHOU Zh M, et al. Sounding data were used to estimate the height of the atmospheric boundary layer on the Qinghai-Tibet Plateau and its lower reaches[J]. Torrential Rain and Disasters, 2014, 33(3): 217-227(in Chinese). DOI: 10.3969/j.issn.1004-9045.2014.03.004
    [10]
    DAI Ch Y, GAO Zh Q, CHENG G. Analysis of atmospheric boundary layer height characteristics over the arctic ocean using the aircraft and GPS soundings[J]. Atmospheric and Oceanic Science Letters, 2011, 4(2): 124-130. DOI: 10.1080/16742834.2011.11446916
    [11]
    黄轩, 郑佳锋, 张杰, 等. 西宁机场一次低空风切变的结构和特征研究[J]. 激光技术, 2022, 46(2): 206-212. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010

    HUANG X, ZHENG J F, ZHANG J, et al. Study on the structure and characteristics of a low-altitude wind shear at Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.010
    [12]
    刘思波, 何文英, 刘红燕, 等. 地基微波辐射计探测大气边界层高度方法[J]. 应用气象学报, 2015, 26(5): 626-635. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201505012.htm

    LIU S B, HE W Y, LIU H Y, et al. Ground-based microwave radiometer method for detecting the height of the atmospheric boundary layer[J]. Journal of Applied Meteorological Science, 2015, 26(5): 626-635(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201505012.htm
    [13]
    LIU B M, MA Y Y, GONG W, et al. Two-wavelength LiDAR inversion algorithm for determining planetary boundary layer height[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206: 117-124. DOI: 10.1016/j.jqsrt.2017.11.008
    [14]
    张涛, 黎倩, 郑佳锋, 等. 激光测风雷达研究微下击暴流引发的低空风切变[J]. 激光技术, 2022, 44(5): 563-569. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007

    ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using LiDAR and other data[J]. Laser Technology, 2022, 44(5): 563-569(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.007
    [15]
    王珍珠, 李炬, 钟志庆, 等. 激光雷达探测北京城区夏季大气边界层[J]. 应用光学, 2008, 29(1): 96-100. DOI: 10.3969/j.issn.1002-2082.2008.01.023

    WANG Zh Zh, LI J, ZHONG Zh Q, et al. Lidar detects the summer atmospheric boundary layer in Beijing[J]. Journal of Applied Optics, 2008, 29(1): 96-100(in Chinese). DOI: 10.3969/j.issn.1002-2082.2008.01.023
    [16]
    李红, 马媛媛, 杨毅. 基于激光雷达资料的小波变换法反演边界层高度的方法[J]. 干旱气象, 2015, 33(1): 78-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201501010.htm

    LI H, MA Y Y, YANG Y. A method of inverting the height of the boundary layer by the wavelet transformation method based on lidar data[J]. Dry Weather, 2015, 33(1): 78-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201501010.htm
    [17]
    MENUT L, FLAMANT C, PELON J. Urban boundary-layer height determination from lidar measurements over the paris area[J]. Applied Optics, 1999, 38(6): 945-954. DOI: 10.1364/AO.38.000945
    [18]
    BOERS R, ELORANTA E W, COULTER R L. Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth rate[J]. Journal of Climate and Applied Meteorology, 1984, 2(1): 247-266.
    [19]
    SHIN S K, YOUNG M N, LEE K H, et al. Retrieval of the single scattering albedo of Asian dust mixed with pollutants using lidar observations[J]. Advances in Atmospheric Sciences, 2014, 9(10): 1417-1426.
    [20]
    DANG R J, YANG Y, HU X M, et al. A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data[J]. Remote Sensing, 2019, 11(13): 1590.
    [21]
    王东祥, 宋小全, 冯长中, 等. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(1): s101001.

    WANG D X, SONG X Q, FENG Ch Zh, et al. Coherent Doppler lidar observes the height of the ocean atmosphere boundary layer in the Bohai Yellow Sea[J]. Acta Optica Sinica, 2015, 35(1): s101001 (in Chinese).
    [22]
    薛定宇, 赵春娜. 分数阶系统的分数阶PID控制器设计[J]. 控制理论与应用, 2007, 24(5): 771-776. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200705014.htm

    XUE D Y, ZHAO Ch N. Fractional order PID controller design for fractional order systems[J]. Control Theory and Applications, 2007, 24(5): 771-776(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200705014.htm
    [23]
    PIOTR O, DARIUSZ B, PIOTR D, et al. The variable, fractional-order discrete-time PD controller in the ⅡSv1.3 robot arm control[J]. Central European Journal of Physics, 2013, 11(6): 750-759.
    [24]
    范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702037.htm

    FAN Q, ZHU K Y, ZHENG J F, et al. Analysis of detection performance of all-fiber coherent laser wind radar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201702037.htm
    [25]
    CHRISTOPHE B, JEAN-CLAUDE A, REGISDU V. On the similarity functions A and B as determined from the VOVES experiment[J]. Boundary Layer Meteorology, 1981, 21(4): 495-507.
    [26]
    车军辉, 赵平, 史茜, 等. 大气边界层研究进展[J]. 地球物理学报, 2021, 64(3): 735-751. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103001.htm

    CHE J H, ZHAO P, SHI X, et al. Progress in atmospheric boundary layer research[J]. Chinese Journal of Geo-physics, 2021, 64(3): 735-751(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103001.htm
    [27]
    杨富燕, 张宁, 朱莲芳, 等. 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 2016, 35(4): 1102-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604023.htm

    YANG F Y, ZHANG N, ZHU L F, et al. Comparison of methods for determining mixed layer height based on lidar and microwave radiometer observations[J]. Plateau Meteorology, 2016, 35(4): 1102-1111(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604023.htm
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (11) PDF downloads (7) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return