Advanced Search
PENG Tao, WANG Qian, SHI Lei, JIANG Yong, CHEN Yong, ZHOU Dingfu. Influence of optical parameters of wind LiDAR on coherent efficiency[J]. LASER TECHNOLOGY, 2023, 47(6): 751-756. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.004
Citation: PENG Tao, WANG Qian, SHI Lei, JIANG Yong, CHEN Yong, ZHOU Dingfu. Influence of optical parameters of wind LiDAR on coherent efficiency[J]. LASER TECHNOLOGY, 2023, 47(6): 751-756. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.004

Influence of optical parameters of wind LiDAR on coherent efficiency

More Information
  • Received Date: October 27, 2022
  • Revised Date: November 28, 2022
  • Published Date: November 24, 2023
  • By combining theoretical derivation and experimental verification, research was conducted on how optical parameters affected the coherence efficiency of wind light detection and ranging (LiDAR). According to the superposition principle of optical fields, the influence of local oscillator waist and fiber coupler diameter and optical aberrations on coherent efficiency was discussed. Experiment of atmospheric turbulence effect was conducted, and the system signal-to-noise ratio with different optical parameters was measured under typical weather conditions. The consequence indicate that if the pupil aperture and F number are 100 mm and 2, the optimal beam waist and receive fiber diameter are 3.3 μm and 9 μm, and root mean square of the optical wavefront aberration is less than 0.06λ. Under strong turbulence, when the visibility is less than 5 km, the radar detection distance decreases by 60%. It has special significance for optimizing optical parameters to promote the study.
  • [1]
    范琪, 朱晓林, 周鼎富, 等. 激光测风雷达分析典型高原机场风场特征[J]. 激光技术, 2020, 44(5): 525-531. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001

    FAN Q, ZHU X L, ZHOU D F, et al. Analysis of the wind field characteristics using the wind LiDAR in a typical plateau airport[J]. Laser Technology, 2020, 44(5): 525-531(in Chiness). DOI: 10.7510/jgjs.issn.1001-3806.2020.05.001
    [2]
    BONIN T A, CHOUKULKAR A, BREWER W A, et al. Evaluation of turbulence measurement techniques from a single Doppler lidar[J]. Atmosphere Measurement Technology, 2017, 10(8): 3021-3039. DOI: 10.5194/amt-10-3021-2017
    [3]
    CHOUKULKAR A, BREWER W A, SANDBERG S P, et al. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign[J]. Atmosphere Measurement Technology, 2017, 10(1): 247-264. DOI: 10.5194/amt-10-247-2017
    [4]
    AITKEN M L, BANTA R M, PICHUGINA Y L, et al. Quantifying wind turbine wake characteristics from scanning remote sensor data[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(4): 765-787. DOI: 10.1175/JTECH-D-13-00104.1
    [5]
    PARVIZI R, HARUN S W, ALI N M, et al. Investigation on threshold power of stimulated Brillouin scattering in photonic crystal fiber[J]. Optiks, 2012, 123(13): 1149-1152. DOI: 10.1016/j.ijleo.2011.07.043
    [6]
    SATHE A, MANN J, GOTTSCHALL J, et al. Can wind lidars measure turbulence?[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(7): 853-868. DOI: 10.1175/JTECH-D-10-05004.1
    [7]
    MANN J, PEÑA A, BINGÖF F, et al. Lidar scanning of momentum flux in and above the atmospheric surface layer[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(6): 959-976. DOI: 10.1175/2010JTECHA1389.1
    [8]
    DRECHSEL S, MAYR G J, CHONG M, et al. Three-dimensional wind retrieval: Application of MUSCAT to dual-Doppler lidar[J]. Journal of Atmosphere Oceanic Technology, 2009, 26(3): 635-646. DOI: 10.1175/2008JTECHA1115.1
    [9]
    TUCKER S C, SENFF C J, WEICKMANN A M, et al. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(4): 673-688. DOI: 10.1175/2008JTECHA1157.1
    [10]
    罗杰, 侯再红, 靖旭, 等. 相干激光测风技术研究进展[J]. 量子电子学报, 2020, 37(2): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU202002001.htm

    LUO J, HOU Z H, JING X, et al. Advances in coherent laser wind measurement technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137(in Chiness). https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU202002001.htm
    [11]
    马福民, 陈涌, 杨泽后, 等. 激光多普勒测风技术最新进展[J]. 激光与光电子学进展, 2019, 56(18): 180003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201918004.htm

    MA F M, CHEN Y, YANG Z H, et al. Latest development of laser Doppler wind measurement technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180003(in Chiness). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201918004.htm
    [12]
    周艳宗, 王冲, 刘燕平, 等. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 020001. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902001.htm

    ZHOU Y Z, WANG Ch, LIU Y P, et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 2019, 56(2): 020001(in Chiness). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902001.htm
    [13]
    AUGERE B, VALLA M, DURÉCU A, et al. Three-dimensional wind measurements with the fibered airborne coherent Doppler wind lidar LIVE[J]. Atmosphere, 2019, 10(9): 549. DOI: 10.3390/atmos10090549
    [14]
    WITSCHAS B, RAHM S, DÖRNBRACK A, et al. Airborne wind lidar measurements of vertical and horizontal winds for the investigation of orographically induced gravity waves[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(6): 1371-1386. DOI: 10.1175/JTECH-D-17-0021.1
    [15]
    WANG Ch, XIA H Y, LIU Y P, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 2018, 424: 48-53. DOI: 10.1016/j.optcom.2018.04.042
    [16]
    MARTIN A, DODANE D, LEVIANDIER L, et al. Photonic integrated crcuit-based FMCW coherent LiDAR[J]. Journal of Lightwave Technology, 2018, 36(19): 4640-4645.
    [17]
    CLEMENT J, SCHNÉBELIN C, de CHATELLUS H G, et al. Laser ranging using coherent pulse compression with frequency shifting loops[J]. Optics Express, 2019, 27(9): 12000-12010. DOI: 10.1364/OE.27.012000
    [18]
    HAYLOCK B, BAKER M A, STACE T M, et al. Fast electro-optic switching for coherent laser ranging and velocimetry[J]. Applied Physics Letters, 2019, 115(18): 181103.
    [19]
    彭涛, 陈涌, 赵培娥, 等. 光纤脉冲相干激光测风雷达光学天线特性分析[J]. 激光技术, 2022, 46(4): 511-515. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.011

    PENG T, CHEN Y, ZHAO P E, et al. Character analysis of fiber coherent LiDAR antenna[J]. Laser Technology, 2020, 44(5): 525-531(in Chiness). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.011
    [20]
    宫喜宇, 张鹏, 吴潇杰, 等. 像差及湍流对90°空间光混频器性能的影响研究[J]. 光子学报, 2021, 50(4): 0401003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104009.htm

    GONG X Y, ZHANG P, WU X J, et al. Research on influence of aberration and turbulence on performance of 90° space optical hybrid[J]. Acta Photonica Sinica, 2021, 50(4): 0401003(in Chiness). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104009.htm

Catalog

    Article views (11) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return