Advanced Search
LÜ Guorui, BIAN Jintian, WENG Jiaqi, KONG Hui, XU Haiping, GUO Lei, WANG Rongqing. Research progress of narrow-linewidth mid-infrared laser[J]. LASER TECHNOLOGY, 2023, 47(6): 742-750. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.003
Citation: LÜ Guorui, BIAN Jintian, WENG Jiaqi, KONG Hui, XU Haiping, GUO Lei, WANG Rongqing. Research progress of narrow-linewidth mid-infrared laser[J]. LASER TECHNOLOGY, 2023, 47(6): 742-750. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.003

Research progress of narrow-linewidth mid-infrared laser

More Information
  • Received Date: October 13, 2022
  • Revised Date: November 26, 2022
  • Published Date: November 24, 2023
  • 3 μm~5 μm is one of the transmission windows of the atmosphere, including many atoms or molecules' characteristic absorption peaks. 3 μm~5 μm laser souses have wide applications, such as medical diagnosis, environmental monitoring, spectral analysis, military countermeasure, and so on. In these application fields, light sources are often required to have narrow linewidth and wavelength tuning capability. Narrow-linewidth laser is an ideal light source for these applications due to its small spectrum range and concentrative energy. The technology of narrow-linewidth of 3 μm~5 μm laser were summarized, including the linewidth compression method of the Fe2+/Cr2+ ion-doped solid-state laser and fluoride fiber laser, and several methods of quantum cascade laser frequency stabilization were discussed. The compact and all-solid-state mid-infrared optical parametric oscillator was mainly introduced. And the related research work of our group on the narrow linewidth of an optical parametric oscillator was introduced. Finally, the research prospect of the narrow-linewidth mid-infrared laser has been prospected.
  • [1]
    范晋祥. 美国弹道导弹防御系统的红外系统与技术的发展[J]. 红外与激光程, 2006, 35(5): 536-540. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200605007.htm

    FAN J X. Status quo and trend of infrared system and technologies for America's ballistic missile defense system[J]. Infrared and Laser Engineering, 2006, 35(5): 536-540(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200605007.htm
    [2]
    MOULTON P, DERGACHEV A, ISYANOVA Y, et al. Recent advances in solid state lasers and nonlinear optics for remote sensing[C]// Conference on Lidar Remote Sensing for Industry and Environment Monitoring Ⅲ. Bellingham, USA: International Society for Optical Engineering, 2003: 193-202.
    [3]
    GUO B J, WANG Y, PENG C, et al. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Optics Express, 2004, 12(1): 208-219. DOI: 10.1364/OPEX.12.000208
    [4]
    VAN HERPEN M, TE LINTEL HEKKERT S, BISSON S E, et al. Development of a powerful continuously tunable mid-infrared CW PPLN OPO for trace gas detection[C]// ALT'01 International Conference on Advanced Laser Technologies. Bellingham, USA: International Society for Optical Engineering, 2002: 16-21.
    [5]
    VAINIO M, SILTANEN M, PELTOLA J, et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy[J]. Applied Optics, 2011, 50(4): A1-A10. DOI: 10.1364/AO.50.0000A1
    [6]
    RICHTER D, FRIED A, WERT B P, et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Applied Physics, 2002, B75(2/3): 281-288.
    [7]
    KRZEMPEK K, JAHJAH M, LEWICKI R, et al. CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell[J]. Applied Physics, 2013, B112(4): 461-465.
    [8]
    ELVIN R, HOTH G W, WRIGHT M, et al. Cold-atom clock based on a diffractive optic[J]. Optics Express, 2019, 27(26): 38359-38366. DOI: 10.1364/OE.378632
    [9]
    REN T, WU C, YU Y, et al. Development progress of 3-5 μm mid-infrared lasers: OPO, solid-state and fiber laser[J]. Applied Sciences, 2021, 11(23): 11451. DOI: 10.3390/app112311451
    [10]
    TURNER E J, McDANIEL S A, TABIRYAN N, et al. Rapidly tunable HIP treated Cr ∶ZnSe narrow-linewidth laser[J]. Optics Express, 2019, 27(9): 12282-12288. DOI: 10.1364/OE.27.012282
    [11]
    LI Y Y, JU Y L, DAI T Y, et al. A gain-switched Fe ∶ZnSe laser pumped by a pulsed Ho, Pr: LLF laser[J]. Chinese Physics Letters, 2019, 36(4): 24-26.
    [12]
    WANG Q, LIU C, QI L, et al. Wavelength tunable single-frequency Cr ∶ZnSe laser[C]// 2019 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications. Bellingham, USA: International Society for Optical Engineering, 2019: 114370H.
    [13]
    DAI S, FENG G, HONG Z, et al. 4.24 μm mid-infrared laser based on a single Fe2+-doped ZnSe microcrystal[J]. Optics Letters, 2018, 43(3): 411-414. DOI: 10.1364/OL.43.000411
    [14]
    EVANS J W, STITES R W, HARRIS T R. Increasing the performance of an Fe ∶ZnSe laser using a hot isostatic press[J]. Optical Materials Express, 2017, 7(12): 4296-4303. DOI: 10.1364/OME.7.004296
    [15]
    EVANS J W, DOLASINSKO B D, HARRIS T R, et al. Demonstration and power scaling of an Fe ∶CdMnTe laser at 5.2 microns[J]. Optical Materials Express, 2017, 7(3): 860-867. DOI: 10.1364/OME.7.000860
    [16]
    STITES R W, McDANIEL S A, BARNES J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353. DOI: 10.1364/OME.6.003339
    [17]
    YUAN J H, CHEN Y, YANG H Y, et al. Investigation of a gain-switched Cr2+ ∶ZnSe laser pumped by an acousto-optic Q-switched Ho ∶YAG laser[J]. Quantum Electronics, 2016, 46(9): 772-776. DOI: 10.1070/QEL16157
    [18]
    LANCASTER A, COOK G, McDANIEL S A, et al. Mid-infrared laser emission from Fe ∶ZnSe cladding waveguides[J]. Applied Physics Letters, 2015, 107(3): 885-895.
    [19]
    MAcDONALD J R, BEECHER S J, LANCASTER A, et al. Ultrabroad mid-infrared tunable Cr ∶ZnSe channel waveguide laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 375-379.
    [20]
    CHEN M, CUI H, LI W, et al. Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe[J]. Journal of Alloys and Compounds, 2014, 597(17): 124-128.
    [21]
    McDANIEL S A, BERRY P A, SCHEPLER K L, et al. Gain-switched operation of ultrafast laser inscribed waveguides in Cr ∶ZnSe[C]// Solid State Lasers Ⅹ Ⅹ Ⅳ: Technology and Devices. Bellingham, USA: International Society for Optical Engineering, 2015: 93420E.
    [22]
    SHEN Y, WANG Y, ZHU F, et al. 200 μJ, 13 ns Er ∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 2021, 46(5): 1141-1144. DOI: 10.1364/OL.418950
    [23]
    SHEN Y, WANG Y, LUAN K, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics, 2017, B123(4): 105-111.
    [24]
    CRAWFORD S, HUDSON D D, JACKSON S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 2015, 7(3): 1502309.
    [25]
    BERNIER M, MICHAUD-BELLEAU V, LEVASSEUR S, et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 2015, 40(1): 81-84. DOI: 10.1364/OL.40.000081
    [26]
    沈炎龙, 黄珂, 朱峰, 等. LD泵浦瓦级单模高掺铒中红外光纤激光器[J]. 光子学报, 2014, 43(3): 0314002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201403016.htm

    SHEN Y L, HUANG K, ZHU F, et al. Laser diode-pumped watt-level single mode heavily erbium-doped mid-infrared fiber laser[J]. Acta Photonica Sinica, 2014, 43(3): 0314002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201403016.htm
    [27]
    HUDSON D D, WILLIAMS R J, WITHFORD M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 2013, 38(14): 2388-2390. DOI: 10.1364/OL.38.002388
    [28]
    ZHU X Sh, JAIN R. Compact 2 W wavelength-tunable Er ∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383. DOI: 10.1364/OL.32.002381
    [29]
    BAYRAKLI I. Frequency-stabilized narrow-linewidth double-mode quantum cascade laser[J]. Optical and Quantum Electronics, 2022, 54(1): 22 (2022).
    [30]
    CAPPELLI F, GALLI I, BORRI S, et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-doppler reference[J]. Optics Letters, 2012, 37(23): 4811-4813. DOI: 10.1364/OL.37.004811
    [31]
    SHEHZAD A, BROCHARD P, MATTHEY R, et al. 10 kHz linewidth mid-infrared quantum cascade laser by stabilization to an optical delay line[J]. Optics Letters, 2019, 44(14): 3470-3473. DOI: 10.1364/OL.44.003470
    [32]
    BORRI S, GALLI I, CAPPELLI F, et al. Direct link of a mid-infrared QCL to a frequency comb by optical injection[J]. Optics Letters, 2012, 37(6): 1011-1013. DOI: 10.1364/OL.37.001011
    [33]
    ZHAO B, WANG X, WANG C. Strong optical feedback stabilized quantum cascade laser[J]. ACS Photonics, 2020, 7(5): 1255-1261. DOI: 10.1021/acsphotonics.0c00189
    [34]
    聂鸿坤, 宁建, 张百涛, 等. 光学超晶格中红外光参量振荡器研究进展[J]. 中国激光, 2021, 48(5): 0501008. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202105009.htm

    NIE H K, NING J, ZHANG B T, et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 2021, 48(5): 0501008 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202105009.htm
    [35]
    WANG X C, WANG Y H, ZHENG H, et al. Wide-tunable mid infrared intra-cavity optical parametric oscillator based on multi-period MgO ∶PPLN[J]. Current Optics and Photonics, 2021, 5(1): 59-65.
    [36]
    RICCIARDI I, MOSCA S, PARISI M, et al. Sub-kHz-linewidth mid-infrared optical parametric oscillator[C]// Conference on Lasers and Electro-Optics. New York, USA: IEEE, 2014: STh1N. 3.
    [37]
    FENG J, CHENG X, LI X, et al. Highly efficient mid-infrared generation from low-power single-frequency fiber laser using phase-matched intracavity difference frequency mixing[J]. Applied Sciences-Basel, 2020, 10(21): 7454-7461. DOI: 10.3390/app10217454
    [38]
    ZHAO J, CHENG P, XU F, et al. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO ∶PPLN at 3.68 μm[J]. Applied Sciences-Basel, 2018, 8(8): 1345-1352. DOI: 10.3390/app8081345
    [39]
    邢廷伦, 王礼, 胡舒武, 等. 3μm低阈值MgO ∶PPLN-OPO布拉格体光栅腔谱宽压窄研究[J]. 中国激光, 2017, 44(1): 10101006. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201701024.htm

    XING Y L, WANG L, HU Sh W, et al. Cavity-linewidth narrowing of 3 μm low threshold MgO ∶PPLN-OPO by volume Bragg grating[J]. Chinese Journal of Lasers, 2017, 44(1): 0101006 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201701024.htm
    [40]
    XING T, WANG L, HU S, et al. Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities[J]. Optics Express, 2017, 25(25): 31810-31815. DOI: 10.1364/OE.25.031810
    [41]
    JIAO Z, GUO J, HE G, et al. Narrowband intracavity MgO ∶PPLN optical parametric oscillator near degeneracy with a volume Bragg grating[J]. Optics and Laser Technology, 2014, 56: 230-233. DOI: 10.1016/j.optlastec.2013.08.023
    [42]
    ZEIL P, THILMANN N, PASISKEVICIUS V, et al. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating[J]. Optics Express, 2014, 22(24): 29907-29913. DOI: 10.1364/OE.22.029907
    [43]
    DOLASINSKI B, POWERS P. Narrow bandwidth tunable optical parametric generator[C]// Nonlinear Frequency Generation and Conversion. Bellingham, USA: International Society for Optical Engineering, 2013: 8604H.
    [44]
    RICCIARDI I, DE TOMMASI E, MADDALONI P, et al. A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy[J]. Molecular Physics, 2012, 110(17): 2103-2109. DOI: 10.1080/00268976.2012.699640
    [45]
    JACOBSSON B, CANALIAS C, PASISKEVICIUS V, et al. Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2007, 32(22): 3278-3280. DOI: 10.1364/OL.32.003278
    [46]
    PENG Y, WEI X, NIE Z, et al. High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Express, 2015, 23(24): 30827-30832. DOI: 10.1364/OE.23.030827
    [47]
    HE G, GUO J, JIAO Z, et al. High-efficiency near-degenerate PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2012, 37(8): 1364-1366. DOI: 10.1364/OL.37.001364
    [48]
    LI K, YANG S, WANG X, et al. Frequency chirped intensity modulated mid-infrared light source based on optical parametric oscillation[J]. IEEE Photonics Journal, 2020, 12(1): 1500409.
    [49]
    ERUSHIN E, NYUSHKOV B, IVANENKO A, et al. Tunable injection-seeded fan-out-PPLN optical parametric oscillator for high-sensitivity gas detection[J]. Laser Physics Letters, 2021, 18(11): 116201-116207. DOI: 10.1088/1612-202X/ac2585
    [50]
    卞进田, 叶庆, 孙晓泉. ZnGeP2 OPO产生4.3μm波段窄线宽激光实验研究[J]. 国防科技大学学报, 2018, 40(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201804002.htm

    BIAN J T, YE Q, SUN X Q. ZnGeP2 optical parametric oscillator 4.3 μm laser with narrow line-width[J]. Journal of National University of Defense Technology, 2018, 40(4): 9-14(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201804002.htm
    [51]
    BIAN J T, KONG H, YE Q, et al. Narrow-linewidth BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 2022, 20(4): 041901.

Catalog

    Article views (10) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return