Citation: | LIANG Feilong, SHI Wenqing, LI Kaiyue, ZHU Zhikai, WU Teng. Effect of Cu mass fraction on microstructure and properties of laser cladded Ni-Cu-WC coatings[J]. LASER TECHNOLOGY, 2023, 47(5): 653-658. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.012 |
[1] |
侯保荣. 海洋腐蚀环境理论及应用[M]. 北京: 化学工业出版社, 1999: 1-10.
HOU B R. Theory and application of marine corrosive environment[M]. Beijing: Chemical Industry Press, 1999: 1-10(in Chinese).
|
[2] |
苏璐璐. Q235钢和不锈钢海水腐蚀机理研究[D]. 济南: 山东大学, 2010: 2-7.
SU L L. Study on corrosion mechanism of Q235 steel and stainless steel in nature seawater[D]. Ji'nan: Shandong University, 2010: 2-7(in Chinese).
|
[3] |
LIN C. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade[J]. Vacuum, 2015, 115(2): 117-123.
|
[4] |
顾伟, 蒋永锋, 宋亓宁, 等. 镍铝青铜表面激光熔覆Ni60A合金的耐蚀性能[J]. 电焊机, 2018, 48(4): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201804008.htm
GU W, JIANG Y F, SONG Q N, et al. Corrosion resistance and cavitation erosion resistance of Ni60A alloy by laser cladding on nickel-aluminum bronze[J]. Electric Welding Machine, 2018, 48(4): 28-32 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201804008.htm
|
[5] |
于静, 刘延川. 船用柴油机气缸套再制造新方法——感应熔覆技术研究现状[J]. 热加工工艺, 2019, 48(6): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201906007.htm
YU J, LIU Y Ch. Innovative remanufacturing method of cylinder liner of marine disesel engine——research status of induction cladding technology[J]. Hot Working Technology, 2019, 48(6): 26-29 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201906007.htm
|
[6] |
孙玉强, 徐鹏. 船用曲轴材料42CrMoA激光熔覆涂层组织及耐磨性能[J]. 材料保护, 2019, 52(10): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910008.htm
SUN Y Q, XU P. Microstructure and wear resistance of laser cladding coatings on 42CrMoA marine crankshaft materials[J]. Materials Protection, 2019, 52(10): 36-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910008.htm
|
[7] |
肖利辉, 丰冬军, 赵乐川, 等. 风电齿轮箱花键轴激光熔覆表面修复工艺[J]. 机械制造, 2022, 60(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG202204015.htm
XIAO L H, FENG D J, ZHAO L Ch, et al. Laser cladding surface repair technology of spline shaft of wind turbine gearbox[J]. Machi-nery, 2022, 60(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG202204015.htm
|
[8] |
李嘉宁, 刘科高, 张元彬. 激光熔覆技术及应用[M]. 北京: 化学工业出版社, 2015: 40-56.
LI J N, LIU K G, ZHANG Y B. Laser cladding technology and application[M]. Beijing: Chemical Industry Press, 2015: 40-56(in Chinese).
|
[9] |
袁庆龙, 梁宁宁. 纯铜表面改性工艺研究进展[J]. 材料导报, 2012, 26(s2): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2012S2038.htm
YUAN Q L, LIANG N N. Research progress on surface modification technologies of pure copper[J]. Materials Reports, 2012, 26(s2): 138-140(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2012S2038.htm
|
[10] |
ZHOU S F, LEI J B, XIONG Z, et al. Synthesis of Fe-p/Cu-Cu-p/Fe duplex composite coatings by laser cladding[J]. Materials & Design, 2016, 97(2): 431-436.
|
[11] |
赵淑珍, 金剑波, 谢敏, 等. 扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响[J]. 中国激光, 2019, 46(3): 0302005. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201903007.htm
ZHAO Sh Zh, JIN J B, XIE M, et al. Effects of scanning speed on microstructure and wear resistance of Cu80Fe20 immiscible coatings prepared by laser cladding[J]. Chinese Journal of Lasers, 2019, 46(3): 0302005 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201903007.htm
|
[12] |
井振宇, 李新梅. 激光熔覆Ni35WC11涂层的参数优化设计[J]. 激光与光电子学进展, 2020, 57(9): 091406 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009018.htm
JING Zh Y, LI X M. Parameter optimization design of laser cladding Ni35WC11 Coating[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091406(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202009018.htm
|
[13] |
LI W Y, YANG X F, XIAO J P, et al. Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J]. Ceramics International, 2021, 47(20): 28754-28763.
|
[14] |
肖奇, 孙文磊, 刘金朵, 等. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202108025.htm
XIA Q, SUN W L, LIU J D, et al. Surface corrosion behavior of Ni60A/WC laser cladding coating[J]. Materials Reports, 2021, 35(8): 8146-8150(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202108025.htm
|
[15] |
吴腾, 师文庆, 谢林圯, 等. 激光熔覆铁基TiC复合涂层成形质量的控制方法[J]. 激光技术, 2022, 46(3): 344-354. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
WU T, SHI W Q, XIE L Y, et al. Forming quality control method of laser cladding Fe-based TiC composite coating[J]. Laser Technology, 2022, 46(3): 344-354(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
|
[16] |
王利, 蔺存国, 苏艳, 等. 典型海域船舶用铜材表面生物污损与腐蚀性能研究[J]. 装备环境工程, 2021, 18(8): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX202108010.htm
WANG L, LIN C G, SU Y, et al. Study on the biological fouling and corrosion of copper surface in typical sea area[J]. Equipment Environmental Engineering, 2021, 18(8): 52-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX202108010.htm
|
[17] |
李青海. 镍基耐蚀合金激光熔覆层的制备与性能研究[D]. 北京: 华北电力大学, 2018: 2-6.
LIN Q H. The fabrication and properties analysis of laser cladding Ni-based corrosion resistance alloy coating[D]. Beijing: North Ch-ina Electric Power University, 2018: 2-6(in Chinese).
|
[18] |
YAN A R, LI Y J, WANG Z Y. Development and characterization of a laser clad WC reinforced Ni-Cu alloy composite coating on brass[J]. Lasers in Engineering, 2014, 29(5): 365-377.
|
[19] |
ZHANG J Q, LEI J B, GU Z J, et al. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding[J]. Surface and Coatings Technology, 2020, 393: 125807.
|
[20] |
李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
LI L Ch, WEI X. Study on the effect of laser cladding composite coating and its WC on crack formation mechanism[J]. Laser Technology, 2023, 47(1): 52-58(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.01.008
|
[21] |
李倩, 陈发强, 王茜, 等. 激光熔覆WC增强Ni基复合涂层的研究进展[J]. 表面技术, 2022, 51(2): 129-143. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202202012.htm
LI Q, CHEN F Q, WANG Q, et al. Research progress of laser-cladding WC reinforced Ni-based composite coating[J]. Surface Technology, 2022, 51(2): 129-143(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202202012.htm
|
[22] |
杨广峰, 郜峰, 崔静. 激光功率对TC4熔覆涂层组织及性能的影响[J]. 表面技术, 2023, 52(1): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202301035.htm
YANG G F, GAO F, CUI J. Effect of laser power on microstructure and properties of TC4 coated coating[J]. Surface Technology, 2023, 52(1): 346-353(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202301035.htm
|
[23] |
ZHAO W, KONG D J. Effects of laser power on immersion corrosion and electrochemical corrosion performances of laser thermal sprayed amorphous AlFeSi coatings[J]. Applied Surface Science, 2019, 481(3): 161-173.
|
[24] |
张伟华. 激光熔覆AlCoCrFeNixMoy高熵合金涂层组织与耐蚀性研究[D]. 鞍山: 辽宁科技大学, 2021: 27-58.
ZHANG W H. Microstucture and corrosion resistance of AlCoCrFeNixMoy high entropy alloy coating by laser cladding[D]. Anshan: University of Science and Technology Liaoning, 2021: 27-58(in Chinese).
|
[25] |
ZHOU J L, KONG D J. Effects of Al and Ti additions on corrosive-wear and electrochemical behaviors of laser cladded FeSiB coatings[J]. Optics & Laser Technology, 2019, 124: 105958.
|
[26] |
NATARAJAN J, YANG C H, KARUPPASAMY S S. Investigation on microstructure, nanohardness and corrosion response of laser cladded colmonoy-6 particles on 316L steel substrate[J]. Materials, 2021, 14(20): 6183.
|
[27] |
YANG X T, LI X Q, YANG Q B, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J]. Surface and Coatings Technology, 2020, 385: 125359.
|