Advanced Search
HE Guohao, LAO Zibin, GAN Honghai, CAO Mingxuan, FU Bin, LIU Zhiping, WANG Ying, YUAN Minghui. Influence of process parameters on micro-channel roughness of SLM forming CuCrZr alloy[J]. LASER TECHNOLOGY, 2023, 47(5): 639-645. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.010
Citation: HE Guohao, LAO Zibin, GAN Honghai, CAO Mingxuan, FU Bin, LIU Zhiping, WANG Ying, YUAN Minghui. Influence of process parameters on micro-channel roughness of SLM forming CuCrZr alloy[J]. LASER TECHNOLOGY, 2023, 47(5): 639-645. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.010

Influence of process parameters on micro-channel roughness of SLM forming CuCrZr alloy

More Information
  • Received Date: July 03, 2022
  • Revised Date: September 15, 2022
  • Published Date: September 24, 2023
  • In order to study the effect of process parameters on the surface roughness of CuCrZr alloy micro-channel formed by selective laser melting (SLM) technology, CuCrZr alloy sample with micro channel was prepared by orthogonal experiment. The roughness and micro morphology of the inner surface of the sample were measured by 3-D topography instrument and scanning electron microscope. The effects of laser power, scan speed and hatch distance on the surface roughness of the overhang surface and side surface of the microchannel were analyzed. The results show that the scan speed has the greatest influence on the roughness of the overhang and side surfaces, and the overhang surface is affected by the quality of the molten pool itself, resulting in the phenomenon of "slag hanging"; while the side surface roughness is greatly affected by the Marangoni effect. After optimization, under the process parameters of laser power 380 W, scan speed 520 mm/s, and hatch distance 0.12 mm, micro-channel samples with minimum side surface roughness (16.91 μm) can be processed; laser power is 320 W, scan speed is 560 mm/s, under the process parameters of 0.14 mm hatch distance, the micro-channel sample with the smallest overhang surface roughness (24.86 μm) was obtained. This research provides the basis for SLM forming surface precision from the perspective of laser processing window, and gives the preliminary process parameter scheme.
  • [1]
    姜海燕, 林卫凯, 吴世彪, 等. 激光选区熔化技术的应用现状及发展趋势[J]. 机械工程与自动化, 2019, 3(5): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201905092.htm

    JIANG H Y, LIN W K, WU Sh B, et al. Application status and development trend of laser selective melting technology[J]. Mechanical Engineering and Automation, 2019, 3(5): 223-226(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201905092.htm
    [2]
    吴峥强, 来克娴. 金属零件选区激光熔化快速成型技术的现状及发展[J]. 红外与激光工程, 2006, 17(s3): 399-404. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200611003089.htm

    WU Zh Q, LAI K X. Status quo and development of laser melting rapid prototyping technology in metal parts selection[J]. Infrared and Laser Engineering, 2006, 17(s3): 399-404(in Chinese). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200611003089.htm
    [3]
    何兴容, 杨永强, 王迪, 等. 选区激光熔化直接成型个性化牙冠牙桥研究[J]. 激光技术, 2010, 34(1): 1-4. DOI: 10.3969/j.issn.1001-3806.2010.01.001

    HE X R, YANG Y Q, WANG D, et al. Direct manufacturing of customized crowns and fixed bridge by selectivelaser melting[J]. Laser Technology, 2010, 34(1): 1-4(in Chinese). DOI: 10.3969/j.issn.1001-3806.2010.01.001
    [4]
    陈锦堂, 郭紫莹, 王成勇, 等. 激光选区熔化Ti-6Al-4V在医疗器械领域的研究现状[J]. 激光技术, 2020, 44(3): 288-298. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.004

    CHEN J T, GUO Z Y, WANG Ch Y, et al. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications[J]. Laser Technology, 2020, 44(3): 288-298(in Chin-ese). DOI: 10.7510/jgjs.issn.1001-3806.2020.03.004
    [5]
    倪聪. 微流道换热器件激光选区熔化成型关键技术研究[D]. 长春: 长春理工大学, 2021: 21-139.

    NI C. Research on key technologies in selective laser melting of micro-channel heat exchanger[D]. Changchun: Changchun University of Science and Technology, 2021: 21-139(in Chinese).
    [6]
    ATTALLA M, MAGHRABIE H M, SPECHT E, et al. An experimental investigation on fluid flow and heat transfer of rough mini-channel with rectangular cross section[J]. Experimental Thermal and Fluid Science, 2016, 75: 199-210. DOI: 10.1016/j.expthermflusci.2016.01.019
    [7]
    高彩茹, 潘欢, 邱春林, 等. 塑料模具钢镦粗过程内部空洞缺陷的有限元模拟[J]. 钢铁研究学报, 2019, 4(6): 547-552. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201906005.htm

    GAO C R, PAN H, QIU Ch L, et al. FEM simulation of inner void defects in plastic die steel during upsetting process[J]. Journal of Iron and Steel Research, 2019, 4(6): 547-552(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201906005.htm
    [8]
    李彬, 戴善波, 顾海, 等. SLM成形角度对316L不锈钢成形精度的影响[J]. 应用激光, 2021, 41(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202103005.htm

    LI B, DAI Sh B, GU H, et al. Influence of SLM sloping angle on forming accuracy of 316L stainless steel[J]. Applied Laser, 2021, 41(3): 454-459(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202103005.htm
    [9]
    魏建锋, 武美萍, 韩基泰. 扫描策略对SLM成形Inconel 718表面质量的影响机制[J]. 应用激光, 2020, 40(4): 621-625. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202004009.htm

    WEI J F, WU M P, HAN J T. Effect mechanism of scanning strategy on surface quality of Inconel 718 by SLM[J]. Applied Laser, 2020, 40(4): 621-625(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202004009.htm
    [10]
    MAJEED A, LÜ J X, ZHANG Y F, et al. An investigation into the influence of processing parameters on the surface quality of AlSi10Mg parts by SLM process[C]//Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology(IBCAST). Islamabad, Pakistan: IEEE, 2019: 143-147.
    [11]
    PAKKANEN J, CALIGNANO F, TREVISAN F, et al. Study of internal channel surface roughnesses manufactured by selective laser melting in aluminum and titanium alloys[J]. Metallurgical & Materials Transactions A, 2016, 47(8): 3837-3844.
    [12]
    PAGGI U, SINICO M, THIJS L, et al. Improving the dimensional accuracy of downfacing surfaces of additively manufactured parts[C]// Proceedings of the 2019 Euspen and ASPE Special Interest Group Meeting. Nantes, France: KE LEUVEN, 2019: 35-38.
    [13]
    WILDGOOSE A J, THOLE K A, SANDERS P, et al. Impact of additive manufacturing on internal cooling channels with varying diameters and build directions[C/OL]. (2020-06-26)[2022-09-08]. https://www.researchgate.net/publication/348534802_Impact_of_Additive_Manufacturing_on_Internal_Cooling_Channels_With_Varying_Diameters_and_Build_Directions.
    [14]
    卢建斌, 杨永强, 王迪, 等. 选区激光熔化成型悬垂面质量的影响因素分析[J]. 激光技术, 2011, 35(2): 148-151. DOI: 10.3969/j.issn.1001-3806.2011.02.002

    LU J B, YANG Y Q, WANG D, et al. Analysis of affecting factors of overhanging surface quality by selective laser melting[J]. Laser Technology, 2011, 35(2): 148-151(in Chinese). DOI: 10.3969/j.issn.1001-3806.2011.02.002
    [15]
    陈宾宾, 姜献峰, 董星涛, 等. 选区激光熔化水平悬垂面成形质量影响因素分析[J]. 应用激光, 2021, 41(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202104009.htm

    CHEN B B, JIANG X F, DONG X T, et al. Analysis of affecting factors of horizontal overhanging surface forming quality by selective laser melting[J]. Applied Laser, 2021, 41(4): 781-792(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202104009.htm
    [16]
    BRANDAU B, da SILVA A, WILSNACK C, et al. Absorbance study of powder conditions for laser additive manufacturing[J]. Materials & Design, 2022, 216: 110591.
    [17]
    刘斌, 路声宇, 李忠华, 等. CuSn10合金选区激光熔化成形及热处理工艺研究[J]. 热加工工艺, 2022, 51(4): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202204025.htm

    LIU B, LU Sh Y, LI Zh H, et al. Research on heat treatment process of CuSn10 alloy fabricated by selective laser melting[J]. Hot Working Technology, 2022, 51(4): 121-125(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202204025.htm
    [18]
    SONG C H, YANG Y Q, YANG L, et al. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5): 885-893.
    [19]
    ZHANG S, ZHU H, ZHANG L, et al. Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting[J]. Materials Letters, 2018, 237(15): 306-309.
    [20]
    MA Z, ZHANG K, REN Z, et al. Selective laser melting of Cu-Cr-Zr copper alloy: Parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2020, 828(11): 154350.
    [21]
    MA Z, ZHANG D Z, LIU F, et al. Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption[J]. Materials & Design, 2019, 187: 108406.
    [22]
    WALLIS C, BUCHMAYR B. Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion[J]. Materials Science and Engineering, 2019, 744: 215-233.
    [23]
    石文浩, 张松, 李剑峰, 等. 基于表面形貌仿真模型的球头铣削参数多目标优化[J]. 工具技术, 2018, 52(6): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201806026.htm

    SHI W H, ZHANG S, LI J F, et al. Multi-objectives optimization of cutting parameters in ball-nose milling based on surface topography simulation model[J]. Tool Engineering, 2018, 52(6): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201806026.htm
  • Cited by

    Periodical cited type(3)

    1. 何启利. 机械制造工艺参数的影响及优化研究. 造纸装备及材料. 2025(02): 91-93 .
    2. 姚讯杰,朱言言,韩曦,杨俊伟,陈龙,王馨仪,王华明. 基于铜合金表面预处理的激光增材制造铜/镍异种金属制备研究. 中国激光. 2025(04): 170-182 .
    3. 潘文瀚,许明三,韦铁平,朱峰立,杨林沂. 选区激光熔化AlSi10Mg拱形点阵成形工艺优化. 福建理工大学学报. 2024(03): 291-297 .

    Other cited types(3)

Catalog

    Article views (677) PDF downloads (6) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return