Citation: | HE Guohao, LAO Zibin, GAN Honghai, CAO Mingxuan, FU Bin, LIU Zhiping, WANG Ying, YUAN Minghui. Influence of process parameters on micro-channel roughness of SLM forming CuCrZr alloy[J]. LASER TECHNOLOGY, 2023, 47(5): 639-645. DOI: 10.7510/jgjs.issn.1001-3806.2023.05.010 |
[1] |
姜海燕, 林卫凯, 吴世彪, 等. 激光选区熔化技术的应用现状及发展趋势[J]. 机械工程与自动化, 2019, 3(5): 223-226. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201905092.htm
JIANG H Y, LIN W K, WU Sh B, et al. Application status and development trend of laser selective melting technology[J]. Mechanical Engineering and Automation, 2019, 3(5): 223-226(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201905092.htm
|
[2] |
吴峥强, 来克娴. 金属零件选区激光熔化快速成型技术的现状及发展[J]. 红外与激光工程, 2006, 17(s3): 399-404. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200611003089.htm
WU Zh Q, LAI K X. Status quo and development of laser melting rapid prototyping technology in metal parts selection[J]. Infrared and Laser Engineering, 2006, 17(s3): 399-404(in Chinese). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200611003089.htm
|
[3] |
何兴容, 杨永强, 王迪, 等. 选区激光熔化直接成型个性化牙冠牙桥研究[J]. 激光技术, 2010, 34(1): 1-4. DOI: 10.3969/j.issn.1001-3806.2010.01.001
HE X R, YANG Y Q, WANG D, et al. Direct manufacturing of customized crowns and fixed bridge by selectivelaser melting[J]. Laser Technology, 2010, 34(1): 1-4(in Chinese). DOI: 10.3969/j.issn.1001-3806.2010.01.001
|
[4] |
陈锦堂, 郭紫莹, 王成勇, 等. 激光选区熔化Ti-6Al-4V在医疗器械领域的研究现状[J]. 激光技术, 2020, 44(3): 288-298. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.004
CHEN J T, GUO Z Y, WANG Ch Y, et al. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications[J]. Laser Technology, 2020, 44(3): 288-298(in Chin-ese). DOI: 10.7510/jgjs.issn.1001-3806.2020.03.004
|
[5] |
倪聪. 微流道换热器件激光选区熔化成型关键技术研究[D]. 长春: 长春理工大学, 2021: 21-139.
NI C. Research on key technologies in selective laser melting of micro-channel heat exchanger[D]. Changchun: Changchun University of Science and Technology, 2021: 21-139(in Chinese).
|
[6] |
ATTALLA M, MAGHRABIE H M, SPECHT E, et al. An experimental investigation on fluid flow and heat transfer of rough mini-channel with rectangular cross section[J]. Experimental Thermal and Fluid Science, 2016, 75: 199-210. DOI: 10.1016/j.expthermflusci.2016.01.019
|
[7] |
高彩茹, 潘欢, 邱春林, 等. 塑料模具钢镦粗过程内部空洞缺陷的有限元模拟[J]. 钢铁研究学报, 2019, 4(6): 547-552. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201906005.htm
GAO C R, PAN H, QIU Ch L, et al. FEM simulation of inner void defects in plastic die steel during upsetting process[J]. Journal of Iron and Steel Research, 2019, 4(6): 547-552(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201906005.htm
|
[8] |
李彬, 戴善波, 顾海, 等. SLM成形角度对316L不锈钢成形精度的影响[J]. 应用激光, 2021, 41(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202103005.htm
LI B, DAI Sh B, GU H, et al. Influence of SLM sloping angle on forming accuracy of 316L stainless steel[J]. Applied Laser, 2021, 41(3): 454-459(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202103005.htm
|
[9] |
魏建锋, 武美萍, 韩基泰. 扫描策略对SLM成形Inconel 718表面质量的影响机制[J]. 应用激光, 2020, 40(4): 621-625. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202004009.htm
WEI J F, WU M P, HAN J T. Effect mechanism of scanning strategy on surface quality of Inconel 718 by SLM[J]. Applied Laser, 2020, 40(4): 621-625(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202004009.htm
|
[10] |
MAJEED A, LÜ J X, ZHANG Y F, et al. An investigation into the influence of processing parameters on the surface quality of AlSi10Mg parts by SLM process[C]//Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology(IBCAST). Islamabad, Pakistan: IEEE, 2019: 143-147.
|
[11] |
PAKKANEN J, CALIGNANO F, TREVISAN F, et al. Study of internal channel surface roughnesses manufactured by selective laser melting in aluminum and titanium alloys[J]. Metallurgical & Materials Transactions A, 2016, 47(8): 3837-3844.
|
[12] |
PAGGI U, SINICO M, THIJS L, et al. Improving the dimensional accuracy of downfacing surfaces of additively manufactured parts[C]// Proceedings of the 2019 Euspen and ASPE Special Interest Group Meeting. Nantes, France: KE LEUVEN, 2019: 35-38.
|
[13] |
WILDGOOSE A J, THOLE K A, SANDERS P, et al. Impact of additive manufacturing on internal cooling channels with varying diameters and build directions[C/OL]. (2020-06-26)[2022-09-08]. https://www.researchgate.net/publication/348534802_Impact_of_Additive_Manufacturing_on_Internal_Cooling_Channels_With_Varying_Diameters_and_Build_Directions.
|
[14] |
卢建斌, 杨永强, 王迪, 等. 选区激光熔化成型悬垂面质量的影响因素分析[J]. 激光技术, 2011, 35(2): 148-151. DOI: 10.3969/j.issn.1001-3806.2011.02.002
LU J B, YANG Y Q, WANG D, et al. Analysis of affecting factors of overhanging surface quality by selective laser melting[J]. Laser Technology, 2011, 35(2): 148-151(in Chinese). DOI: 10.3969/j.issn.1001-3806.2011.02.002
|
[15] |
陈宾宾, 姜献峰, 董星涛, 等. 选区激光熔化水平悬垂面成形质量影响因素分析[J]. 应用激光, 2021, 41(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202104009.htm
CHEN B B, JIANG X F, DONG X T, et al. Analysis of affecting factors of horizontal overhanging surface forming quality by selective laser melting[J]. Applied Laser, 2021, 41(4): 781-792(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202104009.htm
|
[16] |
BRANDAU B, da SILVA A, WILSNACK C, et al. Absorbance study of powder conditions for laser additive manufacturing[J]. Materials & Design, 2022, 216: 110591.
|
[17] |
刘斌, 路声宇, 李忠华, 等. CuSn10合金选区激光熔化成形及热处理工艺研究[J]. 热加工工艺, 2022, 51(4): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202204025.htm
LIU B, LU Sh Y, LI Zh H, et al. Research on heat treatment process of CuSn10 alloy fabricated by selective laser melting[J]. Hot Working Technology, 2022, 51(4): 121-125(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202204025.htm
|
[18] |
SONG C H, YANG Y Q, YANG L, et al. Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5): 885-893.
|
[19] |
ZHANG S, ZHU H, ZHANG L, et al. Microstructure and properties of high strength and high conductivity Cu-Cr alloy components fabricated by high power selective laser melting[J]. Materials Letters, 2018, 237(15): 306-309.
|
[20] |
MA Z, ZHANG K, REN Z, et al. Selective laser melting of Cu-Cr-Zr copper alloy: Parameter optimization, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2020, 828(11): 154350.
|
[21] |
MA Z, ZHANG D Z, LIU F, et al. Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption[J]. Materials & Design, 2019, 187: 108406.
|
[22] |
WALLIS C, BUCHMAYR B. Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion[J]. Materials Science and Engineering, 2019, 744: 215-233.
|
[23] |
石文浩, 张松, 李剑峰, 等. 基于表面形貌仿真模型的球头铣削参数多目标优化[J]. 工具技术, 2018, 52(6): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201806026.htm
SHI W H, ZHANG S, LI J F, et al. Multi-objectives optimization of cutting parameters in ball-nose milling based on surface topography simulation model[J]. Tool Engineering, 2018, 52(6): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS201806026.htm
|