Advanced Search
HAO Yunqi, JIA Ruoyi, DING Beibei, ZHONG Mengyang, YANG Kun. Bandwidth optimization research of wide-band optical source with the Er3+-doped fiber amplified spontaneous emission[J]. LASER TECHNOLOGY, 2023, 47(4): 500-505. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.009
Citation: HAO Yunqi, JIA Ruoyi, DING Beibei, ZHONG Mengyang, YANG Kun. Bandwidth optimization research of wide-band optical source with the Er3+-doped fiber amplified spontaneous emission[J]. LASER TECHNOLOGY, 2023, 47(4): 500-505. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.009

Bandwidth optimization research of wide-band optical source with the Er3+-doped fiber amplified spontaneous emission

More Information
  • Received Date: May 15, 2022
  • Revised Date: June 12, 2022
  • Published Date: July 24, 2023
  • In order to solve the natural narrow bandwidth of wide-bandwidth optical source with Er3+-doped fiber amplified spontaneous emission, the configuration of double-pass, backward pumped, and connected unpumped-fiber was proposed to eliminate the influence of pump source and broaden its bandwidth. The numerical simulation and experiment were carried out. The influence of Er3+-doped fiber length and reflection coefficient of fiber reflect mirror on the optical spectrum was analyzed in detail. The optimization effect of unpumped Er3+-doped fiber on the amplified spontaneous emission output spectrum was studied. The results show that, with increasing the length of pumped fiber, the C-band of the amplified spontaneous emission spectrum decreases slowly, and L-band raises. When the reflect coefficient of mirror increases, the bandwidth of amplified spontaneous emission was broadened correspondingly. The bandwidth of amplified spontaneous emission is 50.31 nm when the pumped and unpumped fiber is 6 m and 2 m respectively, which is improved 44 nm. All the results obtained could provide support for the design of wide-band optical source.
  • [1]
    顾宏灿, 姚高飞, 黄俊斌, 等. 基于相位掩模板的常规光纤制备弱反射光栅[J]. 激光技术, 2022, 46(2): 149-154. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.001

    GU H C, YAO G F, HUANG J B, et al. Fabrication of weak fiber Bragg grating with conventional fiber based on phase mask[J]. Laser Technology, 2022, 46(2): 149-154(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.001
    [2]
    李虎, 郭子龙, 杨文婷, 等. 空芯光纤多模干涉型光纤液位传感技术研究[J]. 激光技术, 2022, 46(1): 120-124. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.012

    LI H, GUO Z L, YANG W T, et al. Research of the liquid level sensing technology based on a hollow fiber multimode interference optical fiber[J]. Laser Technology, 2022, 46(1): 120-124(in Chin-ese). DOI: 10.7510/jgjs.issn.1001-3806.2022.01.012
    [3]
    刘强, 毕卫红, 付兴虎, 等. 基于少模光纤长周期光栅叠栅的折射率传感特性[J]. 光子学报, 2018, 47(1): 0106001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201801014.htm

    LIU Q, BI W H, FU X H, et al. Refractive index sensing characteristic of superimposed long period grating on few mode fiber[J]. Acta Photonica Sinca, 2018, 47(1): 0106001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201801014.htm
    [4]
    訾慧, 薛正群, 王凌华, 等. 1550 nm宽光谱超辐射发光二极管的研制[J]. 红外与激光工程, 2018, 47(4): 0420001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201804036.htm

    ZI H, XUE Zh Q, WANG L H, et al. Study of wide spectrum superluminescent diode at 1550 nm[J]. Infrared and Laser Engineering, 2018, 47(4): 0420001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201804036.htm
    [5]
    李吴皓, 王定理, 李中坤, 等. 大功率低偏振度超辐射发光二极管的研制[J]. 激光与红外, 2022, 52(2): 217-222. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202202011.htm

    LI W H, WANG D L, LI Zh K, et al. Study of high power low polarization superluminescent diodes[J]. Laser & Infrared, 2022, 52(2): 217-222(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202202011.htm
    [6]
    周帅, 许瑨, 田坤, 等. 1310 nm大功率高偏振度量子阱超辐射发光二极管[J]. 半导体光电, 2021, 42(4): 483-487. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104007.htm

    ZHOU Sh, XU J, TIAN K, et al. 1310 nm quantum-well superluminescent diode with high power and high degree of polarization[J]. Semiconductor Optoelectronics, 2021, 42(4): 483-487(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202104007.htm
    [7]
    习聪玲. S+C+L超宽带光源的研究[J]. 激光技术, 2012, 36(6): 822-824. DOI: 10.3969/j.issn.1001-3806.2012.06.027

    XI C L. Study on S+C+L ultra broadband light source[J]. Laser Technology, 2012, 36(6): 822-824(in Chinese). DOI: 10.3969/j.issn.1001-3806.2012.06.027
    [8]
    WANG X L, HUANG W C. Band selective C- or L-band ASE source using unpumped erbium-doped fiber with an optical switch[J]. Optics & Laser Technology, 2013, 48: 263-266. https://www.sciencedirect.com/science/article/pii/S0030399212005257
    [9]
    CHENG X S, AHMAD H, HARUN S W. Broadband ASE source using bismuth-based erbium-doped fibers in double-pass setup[J]. Microwave and Optical Technology Letters, 2010, 52(7): 1636-1638.
    [10]
    CHEN Y E, ZHOU Y K, YANG D W, et al. A temperature-insensitive amplified spontaneous emission broadband source based on er-doped fiber[J]. Chinese Physics Letters, 2018, 35(4): 53-55.
    [11]
    PETROV A B, GUMENYUK R, ALIMBEKOV M S, et al. Broadband superluminescent erbium source with multiwave pumping[J]. Optics Communications, 2018, 413: 304-309. https://www.sciencedirect.com/science/article/pii/S0030401817311707
    [12]
    WU X, RUAN Sh Ch, LIU Ch X. High-stable and broadband erbium-doped superfluorescent photonic crystal fiber source[J]. Optical Engineering, 2012, 51(9): 095005.
    [13]
    郭小冬, 乔学光, 贾振安, 等. 光纤光栅传感器用的高功率宽带光源[J]. 传感器技术, 2005, 24(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ200501029.htm

    GUO X D, QIAO X G, JIA Zh A, et al. High-power broadband light source for fiber Bragg grating sensors[J]. Journal of Transducer Technology, 2005, 24(1): 75-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ200501029.htm
    [14]
    曹帆, 寿国础, 胡怡红, 等. 频谱分割DWDM无源光网络系统串扰实验研究[J]. 光电子·激光, 2009, 20(8): 1033-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200908013.htm

    CAO F, SHOU G Ch, HU Y H, et al. Experimental research on crosstalk in a spectrum-spliced DWDM passive optical network[J]. Journal of Optoelectronics·Laser, 2009, 20(8): 1033-1036(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ200908013.htm
    [15]
    李春生, 颜玢玢, 王大朋, 等. 基于超宽带铋铒共掺光纤光源的光纤光栅传感[J]. 中国激光, 2017, 44(1): 0110003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201701036.htm

    LI Ch Sh, YAN B B, WANG D P, et al. Fiber Bragg grating sensing by ultra-broadband light source based on bismuth-erbium co-doped fiber[J]. Chinese Journal of Lasers, 2017, 44(1): 0110003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201701036.htm
    [16]
    张桂才, 马骏, 马林, 等. 宽带光源光谱不对称性对光纤陀螺性能的影响[J]. 中国惯性技术学报, 2017, 25(5): 670-675. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201705019.htm

    ZHANG G C, MA J, MA L. Effect of spectrum asymmetry of broadband light source on performance of fiber optic gyro[J]. Journal of Chinese Inertial Technology, 2017, 25(5): 670-675(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201705019.htm
    [17]
    钱景仁, 程旭, 朱冰. 掺铒光纤超荧光宽带光源的实验研究[J]. 中国激光, 1998, 25(11): 989-992. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ811.007.htm

    QIAN J R, CHENG X, ZHU B. The experimental research of a broadband erbium-doped fiber superfluorescence source[J]. Chinese Journal of Lasers, 1998, 25(11): 989-992(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ811.007.htm
    [18]
    王秀琳. 高效率两级结构掺铒光纤超荧光宽带光源研究[J]. 集美大学学报(自然科学版), 2006, 11(2): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JMXZ200602015.htm

    WANG X L. Studies of a high efficiency two-stage erbium-doped superfluorescent fiber broadband light source[J]. Journal of Jimei University (Natural Science Edition), 2006, 11(2): 173-176(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-JMXZ200602015.htm
    [19]
    何巍, 祝连庆, 张荫民, 等. 基于单泵浦源结构的高平坦C+L波段掺Er3+光纤宽带光源[J]. 光电子·激光, 2013, 24(12): 2308-2313. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202301013.htm

    HE W, ZHU L Q, ZHANG Y M, et al. A high flatting C+L band Er3+-doped fiber broadband source with the single pump structure[J]. Journal of Optoelectronics ·Laser, 2013, 24(12): 2308-2313(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS202301013.htm
    [20]
    DESURVIRE E, SIMPSON J R. Amplification of spontaneous emission in erbium-doped single-mode fibers[J]. Journal of Lightwave Technology, 1989, 7(5): 835-845.
  • Cited by

    Periodical cited type(2)

    1. 张娟娟, 沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
    2. 李静, 李君, 郝卫东. 基于逆向建模的复杂焊缝数学模型的建立方法. 组合机床与自动化加工技术. 2016(06): 43-46 .

    Other cited types(4)

Catalog

    Article views (14) PDF downloads (8) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return