Advanced Search
CHEN Qianghua, DING Jinhong, HAN Wenyuan, ZHOU Sheng, GUAN Yu, LÜ Hongbo, SUN Qiguo. Effect of optical fiber SPR sensor parameters on the sensitivity of refractive index measurement[J]. LASER TECHNOLOGY, 2023, 47(3): 329-334. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.007
Citation: CHEN Qianghua, DING Jinhong, HAN Wenyuan, ZHOU Sheng, GUAN Yu, LÜ Hongbo, SUN Qiguo. Effect of optical fiber SPR sensor parameters on the sensitivity of refractive index measurement[J]. LASER TECHNOLOGY, 2023, 47(3): 329-334. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.007

Effect of optical fiber SPR sensor parameters on the sensitivity of refractive index measurement

More Information
  • Received Date: April 24, 2012
  • Revised Date: July 13, 2022
  • Published Date: May 24, 2023
  • In order to study of the effect of fiber optic surface plasmon resonance (SPR) sensor parameters on refractive index measurement sensitivity, refractive index measurement experiments were carried out by using the dual-frequency laser heterodyne interferometric phase measurement optical path combined with the optical fiber SPR sensor. The effect of different core diameters on sensor sensitivity of fiber optic SPR sensors was theoretically analyzed. Within the refractive index range adapted by fiber optic SPR sensors, optical fibers with a core diameter of 300 μm and fibers with a core diameter of 400 μm were used to measure the phase difference of glycerol, sucrose and sodium chloride solutions under different mass fractions, and to calculate the corresponding refractive index. The relationship between the mass fraction and refractive index of each solution within the refractive index range adapted by the sensor was analyzed, and the theoretical results were experimentally verified. The results show that the smaller the diameter of the core, the higher the sensitivity of the sensor, and the sensitivity can reach 10-5 orders of magnitude; The higher the density, the higher the stability in the measurement, and the maximum phase difference standard deviation is 0.145°; The larger the molecular weight, the higher the accuracy, and the difference between the measured calculation of sucrose and the calibration value of the Abbe refractometer is up to 0.52×10-4. This research provides a good foundation for the further research and application of optical fiber SPR sensing technology.
  • [1]
    孙德藩, 刘鹏. 基于光纤光谱仪的溶液浓度测量系统[J]. 大学物理实验, 2019, 32(3): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSL201903021.htm

    SUN D F, LIU P. Solution concentration measurement system based on optical fiber spectrometer[J]. Physical Experiment of College, 2019, 32(3): 82-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWSL201903021.htm
    [2]
    王旗. 基于光纤表面等离子共振传感器的制备及性能研究[D]. 南京: 南京邮电大学, 2019: 3-5.

    WANG Q. Preparation and performance of surface plasmon resonance sensor based on fiber optics[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019: 3-5(in Chinese).
    [3]
    陈强华, 刘景海, 罗会甫, 等. 一种基于表面等离子共振的液体折射率测量系统[J]. 光学学报, 2015, 35(5): 0512002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201505022.htm

    CHEN Q H, LIU J H, LUO H F, et al. Refractive index measurement system of liquid based on surface plasmon resonance[J]. Acta Optica Sinica, 2015, 35(5): 0512002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201505022.htm
    [4]
    吴世康. 表面等离子共振传感器的原理与进展[J]. 影像科学与光化学, 2017, 35(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GKGH201701002.htm

    WU Sh K. Principle and development of surface plasmon resonance sensors[J]. Imaging Science and Photochemistry, 2017, 35(1): 15-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GKGH201701002.htm
    [5]
    郑曦妍, 刘宇, 贾锡荣, 等. 表面等离子体共振技术在药物研究中的应用[J]. 药学研究, 2021, 40(3): 196-198. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG202103013.htm

    ZHENG X Y, LIU Y, JIA X R, et al. Application of surface plasmon resonance technology in drug research[J]. Journal of Pharmaceutical Research, 2021, 40(3): 196-198(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYG202103013.htm
    [6]
    李莹, 钟金钢, 张永林, 等. 表面等离子体共振成像生物芯片检测系统[J]. 光子学报, 2007, 36(12): 2290-2293. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200712029.htm

    LI Y, ZHONG J G, ZHANG Y L, et al. Surface plasmon resonance imaging biochip detection system[J]. Acta Photonica Sinica, 2007, 36(12): 2290-2293(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200712029.htm
    [7]
    LI Y, LIU X, LIN Zh. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs[J]. Food Chemistry, 2012, 132(3): 1549-1554.
    [8]
    WOOD R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 1902, 4(19/24): 396-402.
    [9]
    FANO U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)[J]. Journal of the Optical Society of America, 1941, 31(3): 213-222.
    [10]
    OTTO A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. A Journal of Physical Sciences, 1968, 216(4): 398-410.
    [11]
    KRETSCHMANN E, RAETHER H. Radiative decay of non radiative surface plasmons excited by light[J]. A Journal of Physical Sciences, 1968, 23(12): 2135-2136.
    [12]
    ZHANG L M, UTTAMCHANDANI D. Optical chemical sensing employing surface plasmon resonance[J]. Electronics Letters, 1988, 24(23): 1469-1470.
    [13]
    韦天新, 丁永红. 基于表面等离子体共振技术检测水杨酸的新方法[J]. 北京理工大学报, 2016, 36(6): 647-650. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201606018.htm

    WEI T X, DING Y H. A new method for the detection of salicylic acid based on surface plasmon resonance technology[J]. Transactions of Beijing Institute of Technology, 2016, 36(6): 647-650(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201606018.htm
    [14]
    DOMÍNGUEZ-VEGA E, HASELBERG R, van IPEREN D, et al. Development of a surface plasmon resonance sensor for coupling to capillary electrophoresis allowing affinity assessment of protein mixture components[J]. Sensors & Actuators, 2018, B254: 1040-1047.
    [15]
    FARKA Z, JUŘÍK T, PASTUCHA M, et al. Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of salmonella in powdered milk[J]. Analytical Chemistry, 2016, 88(23): 11830-11836.
    [16]
    GUO Y, LIU R, LIU Y, et al. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples[J]. Science of the Total Environment, 2017, 613/614: 783-791.
    [17]
    DIAO W, TANG M, DING S, et al. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices[J]. Biosensors & Bioelectronics, 2017, 100: 228-234.
    [18]
    BO L, NYLANDER C, LUNSTRÖM I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors & Actuators, 1983, 4(2): 299-304.
    [19]
    张孟策. 基于光纤表面等离子体共振技术的传感器研究[D]. 北京: 北京理工大学, 2017: 40-41.

    ZHANG M C. Sensor based on fiber surface plasmon resonance technology[D]. Beijing: Beijing Institute of Technology, 2017: 40-41(in Chinese).
    [20]
    陈强华, 韩文远, 孔祥悦, 等. 基于光纤表面等离子体共振检测溶液折射率变[J]. 中国激光, 2020, 47(8): 0804003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202008019.htm

    CHEN Q H, HAN W Y, KONG X Y, et al. Detection of solution refractive index variation based on optical fiber surface plasmon resonance[J]. Chinese Journal of Lasers, 2020, 47(8): 0804003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202008019.htm

Catalog

    Article views (5) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return