Citation: | GONG Jing, WU Bo, WAN Jiashuo, ZHAO Qinghu, CHENG Jiahao. Research on the precision of pulse coherent velocimetry based on WDR combined FFT method[J]. LASER TECHNOLOGY, 2023, 47(1): 92-97. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.014 |
[1] |
梁晓峰, 张振华. 浅析舰船激光测风雷达技术应用及发展趋势[J]. 激光技术, 2021, 45(6): 768-775. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.016
LIANG X F, ZHANG Zh H. Application and development trend of shipborne wind lidar[J]. Laser Technology, 2021, 45(6): 768-775(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.016
|
[2] |
JOHNSON E A, KLUMPP A R, COLIER J B, et al. Lidar-based hazard avoidance for safe landing on mars[J]. Journal of Guidance Control & Dynamics, 2002, 25(6): 1091-1099.
|
[3] |
周艳宗, 王冲, 刘燕平, 等. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 020001. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902001.htm
ZHOU Y Z, WANG Ch, LIU Y P, et al. Research progress and application of coherent wind lidar[J]. Lasers & Optoelectronics Progress, 2019, 56(2): 020001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902001.htm
|
[4] |
SHINPAUGH K A, SIMPSON R L, WICKS A L, et al. Signal-processing techniques for low signal-to-noise ratio laser Doppler velocimetry signals[J]. Experiments in Fluids, 1992, 12(4/5): 319-328.
|
[5] |
PIERROTTET D, AMZAJERDIAN F, PERI F. Development of an all-fiber coherent laser radar for precision range and velocity measurements[J]. MRS Online Proceedings Library (OPL), 2005, 8(1): FF2.3.1 -FF2.3.8.
|
[6] |
ONORI D, SCOTTI F, SCAFFARDI M, et al. Coherent interferometric dual-frequency laser radar for precise range/Doppler measurement[J]. Journal of Lightwave Technology, 2016, 34(20): 4828-4834. DOI: 10.1109/JLT.2016.2589538
|
[7] |
SCOTTI F, ONORI D, SCAFFARDI M, et al. Multi-frequency lidar/radar integrated system for robust and flexible Doppler measurements[J]. IEEE Photonics Technology Letters, 2015, 27(21): 2268-2271. DOI: 10.1109/LPT.2015.2461458
|
[8] |
蔡喜平, 赵远, 戴永江, 等. CO2相干激光多普勒测速的研究[J]. 红外与毫米波学报, 1996, 15(6): 465-468. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH606.012.htm
CAI X P, ZHAO Y, DAI Y J, et al. Research on CO2 coherent laser Doppler velocimetry[J]. Journal of Infrared and Millimeter Waves, 1996, 15(6): 465-468(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH606.012.htm
|
[9] |
张海洋, 王景峰, 赵长明, 等. 固体相干激光雷达多普勒测速实验[J]. 红外与激光工程, 2006, 35(s3): 284-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3062.htm
ZHANG H Y, WANG J F, ZHAO Ch M, et al. Coherent solid-state lidar and its application in Doppler velocity measurement[J]. Infrared and Laser Engineering, 2006, 35(s3): 284-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3062.htm
|
[10] |
王建银, 周鼎富, 陈云亮, 等. 1.55 μm全光纤相干多普勒激光测速雷达系统研究[J]. 红外与激光工程, 2006, 35(s3): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3067.htm
WANG J Y, ZHOU D F, CHEN Y L, et al. Research on 1.55 μm all-fiber coherent Doppler laser velocimetry radar system[J]. Infrared and Laser Engineering, 2006, 35(s3): 309-312(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3067.htm
|
[11] |
王希涛, 刘秉义, 吴松华, 等. 高精度1.55 μm全光纤激光相干测速实验及数据分析[J]. 激光与光电子学进展, 2011, 48(6): 060301. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201106003.htm
WANG X T, LIU B Y, WU S H, et al. 1.55 μm all-fiber laser heterodyne detection and data analysis with high measurement accuracy of velocity[J]. Laser & Optoelectronics Progress, 2011, 48(6): 060301(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201106003.htm
|
[12] |
李松. 基于DSP芯片的Zoom-FFT方法在激光多普勒测速中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2007: 37-49.
LI S. Research on zoom-FFT used in laser Doppler velocimeter based on DSP[D]. Harbin: Harbin Engineering University, 2007: 37-49 (in Chinese).
|
[13] |
杨苏辉, 蒋奇君, 张海洋, 等. 基于LabVIEW的固体相干激光雷达多普勒测速的信号处理[J]. 北京理工大学学报, 2008, 28(12): 1105-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200812016.htm
YANG S H, JIANG Q J, ZHANG H Y, et al. Signal processing in solid-state coherent lidar using LabVIEW[J]. Transactions of Beijing Institute of Technology, 2008, 28(12): 1105-1108(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200812016.htm
|
[14] |
张艳艳. 一种新的双频激光多普勒测速方法研究[D]. 北京: 清华大学, 2010: 39-49.
ZHANG Y Y. Research on a novel dual-frequency laser Doppler velocity measurement method[D]. Beijing: Tsinghua University, 2010: 39-49(in Chinese).
|
[15] |
眭晓林, 周寿桓, 赵鸿, 等. 一种全光纤结构的相干激光测速雷达研究[J]. 中国激光, 2013, 40(12): 1208007. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201312033.htm
SUI X L, ZHOU Sh H, ZHAO H, et al. Research on an all-fiber structure velocity measurement coherent lidar[J]. Chinese Journal of Lasers, 2013, 40(12): 1208007(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201312033.htm
|
[16] |
SAKLAKOVA V. 激光多普勒雷达测速精度提高的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 24-34.
SAKLAKOVA V. Research to improved precision velocity Doppler Lidar[D]. Harbin: Harbin Institute of Technology, 2015: 24-34(in Chinese).
|
[17] |
陈玉宝, 李强, 步志超, 等. 基于激光遥感技术的硬靶相干测速试验[J]. 气象科技, 2016, 44(5): 697-701. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201605001.htm
CHEN Y B, LI Q, BU Zh Ch, et al. Hard-target coherent velocity measurement experiment based on laser remote sensing technology[J]. Meteorological Science and Technology, 2016, 44(5): 697-701(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201605001.htm
|
[18] |
刘波, 曹昌东, 眭晓林, 等. 激光相干多普勒测速精度实验[J]. 激光与红外, 2018, 48(12): 1486-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201812007.htm
LIU B, CAO Ch D, SUI X L, et al. Experiment of laser coherence Doppler velocimetry[J]. Laser & Infrared, 2018, 48(12): 1486-1490(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201812007.htm
|
[19] |
余杨, 眭晓林. 新型双频相干脉冲压缩测速测距激光雷达[J]. 激光与红外, 2019, 49(2): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201902007.htm
YU Y, SUI X L. New dual-frequency coherent pulse compression velocity and ranging laser radar[J]. Laser & Infrared, 2019, 49(2): 165-169(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201902007.htm
|
[20] |
谈渊, 甘学辉, 张东剑, 等. 基于小波去噪的激光多普勒振动信号处理[J]. 激光技术, 2022, 46(1): 129-133. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014
TAN Y, GAN X H, ZHANG D J, et al. Laser Doppler vibration signal processing based on wavelet denoising[J]. Laser Technology, 2022, 46(1): 129-133(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014
|
[21] |
TANG S, GUO Y, WANG X, et al. Validation of Doppler wind lidar during super typhoon Lekima[J]. Frontiers of Earth Science, 2020, 12(6): 1-15.
|
[22] |
YANG S, PETERSEN G N, LWIS S V, et al. Using Doppler lidar systems to detect atmospheric turbulence in Iceland[J]. Atmospheric Measurement Techniques Discussions, 2019, 3(9): 1-16.
|
[23] |
杨静. 基于双边带调制的脉冲压缩相干激光雷达技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 34-41.
YANG J. Study on pulse-compression coherent lidar technology based on dual-band modulation[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2021: 34-41(in Chinese).
|
[24] |
程正兴. 小波分析算法与应用[M]. 西安: 西安交通大学出版社, 1998: 1-10.
CHENG Zh X. Wavelet analysis algorithms and applications[M]. Xi'an: Xi'an Jiao Tong University Press, 1998: 1-10(in Chin-ese).
|
[25] |
MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
|
[26] |
王晓兰, 王明伟. 基于小波分解和最小二乘支持向量机的短期风速预测[J]. 电网技术, 2010, 34(1): 179-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201001035.htm
WANG X L, WANG M W. Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J]. Power System Technology, 2010, 34(1): 179-184(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201001035.htm
|
[27] |
黄剑琪, 冯华君, 徐之海, 等. 边缘特征增强算法和小波分析在精确聚焦中的应用[J]. 光子学报, 2000, 29(10): 932-936. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200010014.htm
HUANG J Q, FENG H J, XU Zh H, et al. The application of edge-enhancement algorithm and wavelet analysis in auto-focus[J]. Acta Photonica Sinica, 2000, 29(10): 932-936(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200010014.htm
|
[28] |
杨丽娟, 张白桦, 叶旭桢. 快速傅里叶变换FFT及其应用[J]. 光电工程, 2004, 31(s1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC2004S1000.htm
YANG L J, ZHANG B H, YE X Zh, et al. Fast Fourier transform FFT and its applications[J]. Opto-Electronic Engineering, 2004, 31(s1): 1-3(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC2004S1000.htm
|
[29] |
万家硕. 高时带宽激光脉冲相干探测技术研究[M]. 成都: 成都信息工程大学, 2021: 34-42.
WAN J Sh. Research on coherent detection technology of high time bandwidth laser pulse[M]. Chengdu: Chengdu University of Information Technology, 2021: 34-42(in Chinese).
|
[30] |
李辉, 丁桦. 一种抗混叠和失真的小波包信号分解与重构算法[J]. 科学技术与工程, 2008, 8(20): 5580-5588. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200820014.htm
LI H, DING H. Antialiasing and anti-distortion algorithm for signal decomposition and reconstruction based on wavelet package analysis[J]. Science Technology and Engineering, 2008, 8(20): 5580-5588(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200820014.htm
|
1. |
石岩,刘佳. 板式换热器激光密封焊接关键技术研究. 机械工程学报. 2022(06): 101-109 .
![]() | |
2. |
陈琪,肖述广,王超,谢志雄,罗平,董仕节,解剑英. 薄壁TA2钛管高频焊接接头的组织和力学性能. 材料热处理学报. 2022(06): 175-182 .
![]() | |
3. |
张强勇,赵先锐,刘桂香,陈勇,朱征宇,倪站站. 304不锈钢激光焊接工艺及数值模拟. 电焊机. 2021(04): 1-8 .
![]() | |
4. |
王维东,毕宗岳,徐学利. 焊后冷却方式对S20433奥氏体不锈钢等离子弧焊接头性能的影响. 机械工程材料. 2020(01): 74-77 .
![]() | |
5. |
李忠,王涛,刘佳,石岩,白陈明,栗红星. 工艺参量对铝合金复合焊接接头耐蚀性的影响. 激光技术. 2019(02): 189-194 .
![]() | |
6. |
董伟伟,林健,许海亮,符寒光,雷永平,王细波. SUS304不锈钢超薄片脉冲激光焊接工艺及接头的显微组织和力学性能. 机械工程材料. 2019(05): 38-42+48 .
![]() | |
7. |
包仁东,苏轩,陶汪. 奥氏体不锈钢激光焊接工艺研究. 应用激光. 2018(01): 26-31 .
![]() | |
8. |
龚五堂,雷黎明. 0.2mm不锈钢外观件激光精密焊接工艺研究. 应用激光. 2018(04): 597-600 .
![]() | |
9. |
周媛,蔡艳,衡昊坤,盛洁. 氮元素对奥氏体不锈钢激光焊缝气孔和性能的影响. 现代制造技术与装备. 2017(03): 87-89 .
![]() | |
10. |
李镇,石岩,刘佳,李言飞,李云峰,倪聪,闻龙. 镀镍层对铝/钢异种金属激光焊接质量的影响. 应用激光. 2016(03): 316-320 .
![]() |