Advanced Search
GONG Jing, WU Bo, WAN Jiashuo, ZHAO Qinghu, CHENG Jiahao. Research on the precision of pulse coherent velocimetry based on WDR combined FFT method[J]. LASER TECHNOLOGY, 2023, 47(1): 92-97. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.014
Citation: GONG Jing, WU Bo, WAN Jiashuo, ZHAO Qinghu, CHENG Jiahao. Research on the precision of pulse coherent velocimetry based on WDR combined FFT method[J]. LASER TECHNOLOGY, 2023, 47(1): 92-97. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.014

Research on the precision of pulse coherent velocimetry based on WDR combined FFT method

More Information
  • Received Date: January 23, 2022
  • Revised Date: February 24, 2022
  • Published Date: January 24, 2023
  • In order to improve the accuracy of long-distance speed measurement, a signal processing method based on wavelet decomposition reconstruction (WDR) combined with fast Fourier transform (FFT) was adopt in this paper. Theoretical analysis and experimental verification were carried out, and the pulse coherent velocimetry data of hard targets at different speeds were obtained. The results show that the targets with a velocity change of 0.02 m/s can be accurately resolved by using the WDR & FFT method. This research provides a reference for the high-resolution velocity measurement of long-distance and low-velocity targets.
  • [1]
    梁晓峰, 张振华. 浅析舰船激光测风雷达技术应用及发展趋势[J]. 激光技术, 2021, 45(6): 768-775. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.016

    LIANG X F, ZHANG Zh H. Application and development trend of shipborne wind lidar[J]. Laser Technology, 2021, 45(6): 768-775(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.016
    [2]
    JOHNSON E A, KLUMPP A R, COLIER J B, et al. Lidar-based hazard avoidance for safe landing on mars[J]. Journal of Guidance Control & Dynamics, 2002, 25(6): 1091-1099.
    [3]
    周艳宗, 王冲, 刘燕平, 等. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 020001. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902001.htm

    ZHOU Y Z, WANG Ch, LIU Y P, et al. Research progress and application of coherent wind lidar[J]. Lasers & Optoelectronics Progress, 2019, 56(2): 020001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201902001.htm
    [4]
    SHINPAUGH K A, SIMPSON R L, WICKS A L, et al. Signal-processing techniques for low signal-to-noise ratio laser Doppler velocimetry signals[J]. Experiments in Fluids, 1992, 12(4/5): 319-328.
    [5]
    PIERROTTET D, AMZAJERDIAN F, PERI F. Development of an all-fiber coherent laser radar for precision range and velocity measurements[J]. MRS Online Proceedings Library (OPL), 2005, 8(1): FF2.3.1 -FF2.3.8.
    [6]
    ONORI D, SCOTTI F, SCAFFARDI M, et al. Coherent interferometric dual-frequency laser radar for precise range/Doppler measurement[J]. Journal of Lightwave Technology, 2016, 34(20): 4828-4834. DOI: 10.1109/JLT.2016.2589538
    [7]
    SCOTTI F, ONORI D, SCAFFARDI M, et al. Multi-frequency lidar/radar integrated system for robust and flexible Doppler measurements[J]. IEEE Photonics Technology Letters, 2015, 27(21): 2268-2271. DOI: 10.1109/LPT.2015.2461458
    [8]
    蔡喜平, 赵远, 戴永江, 等. CO2相干激光多普勒测速的研究[J]. 红外与毫米波学报, 1996, 15(6): 465-468. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH606.012.htm

    CAI X P, ZHAO Y, DAI Y J, et al. Research on CO2 coherent laser Doppler velocimetry[J]. Journal of Infrared and Millimeter Waves, 1996, 15(6): 465-468(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH606.012.htm
    [9]
    张海洋, 王景峰, 赵长明, 等. 固体相干激光雷达多普勒测速实验[J]. 红外与激光工程, 2006, 35(s3): 284-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3062.htm

    ZHANG H Y, WANG J F, ZHAO Ch M, et al. Coherent solid-state lidar and its application in Doppler velocity measurement[J]. Infrared and Laser Engineering, 2006, 35(s3): 284-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3062.htm
    [10]
    王建银, 周鼎富, 陈云亮, 等. 1.55 μm全光纤相干多普勒激光测速雷达系统研究[J]. 红外与激光工程, 2006, 35(s3): 309-312. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3067.htm

    WANG J Y, ZHOU D F, CHEN Y L, et al. Research on 1.55 μm all-fiber coherent Doppler laser velocimetry radar system[J]. Infrared and Laser Engineering, 2006, 35(s3): 309-312(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2006S3067.htm
    [11]
    王希涛, 刘秉义, 吴松华, 等. 高精度1.55 μm全光纤激光相干测速实验及数据分析[J]. 激光与光电子学进展, 2011, 48(6): 060301. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201106003.htm

    WANG X T, LIU B Y, WU S H, et al. 1.55 μm all-fiber laser heterodyne detection and data analysis with high measurement accuracy of velocity[J]. Laser & Optoelectronics Progress, 2011, 48(6): 060301(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201106003.htm
    [12]
    李松. 基于DSP芯片的Zoom-FFT方法在激光多普勒测速中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2007: 37-49.

    LI S. Research on zoom-FFT used in laser Doppler velocimeter based on DSP[D]. Harbin: Harbin Engineering University, 2007: 37-49 (in Chinese).
    [13]
    杨苏辉, 蒋奇君, 张海洋, 等. 基于LabVIEW的固体相干激光雷达多普勒测速的信号处理[J]. 北京理工大学学报, 2008, 28(12): 1105-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200812016.htm

    YANG S H, JIANG Q J, ZHANG H Y, et al. Signal processing in solid-state coherent lidar using LabVIEW[J]. Transactions of Beijing Institute of Technology, 2008, 28(12): 1105-1108(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG200812016.htm
    [14]
    张艳艳. 一种新的双频激光多普勒测速方法研究[D]. 北京: 清华大学, 2010: 39-49.

    ZHANG Y Y. Research on a novel dual-frequency laser Doppler velocity measurement method[D]. Beijing: Tsinghua University, 2010: 39-49(in Chinese).
    [15]
    眭晓林, 周寿桓, 赵鸿, 等. 一种全光纤结构的相干激光测速雷达研究[J]. 中国激光, 2013, 40(12): 1208007. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201312033.htm

    SUI X L, ZHOU Sh H, ZHAO H, et al. Research on an all-fiber structure velocity measurement coherent lidar[J]. Chinese Journal of Lasers, 2013, 40(12): 1208007(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201312033.htm
    [16]
    SAKLAKOVA V. 激光多普勒雷达测速精度提高的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 24-34.

    SAKLAKOVA V. Research to improved precision velocity Doppler Lidar[D]. Harbin: Harbin Institute of Technology, 2015: 24-34(in Chinese).
    [17]
    陈玉宝, 李强, 步志超, 等. 基于激光遥感技术的硬靶相干测速试验[J]. 气象科技, 2016, 44(5): 697-701. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201605001.htm

    CHEN Y B, LI Q, BU Zh Ch, et al. Hard-target coherent velocity measurement experiment based on laser remote sensing technology[J]. Meteorological Science and Technology, 2016, 44(5): 697-701(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201605001.htm
    [18]
    刘波, 曹昌东, 眭晓林, 等. 激光相干多普勒测速精度实验[J]. 激光与红外, 2018, 48(12): 1486-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201812007.htm

    LIU B, CAO Ch D, SUI X L, et al. Experiment of laser coherence Doppler velocimetry[J]. Laser & Infrared, 2018, 48(12): 1486-1490(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201812007.htm
    [19]
    余杨, 眭晓林. 新型双频相干脉冲压缩测速测距激光雷达[J]. 激光与红外, 2019, 49(2): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201902007.htm

    YU Y, SUI X L. New dual-frequency coherent pulse compression velocity and ranging laser radar[J]. Laser & Infrared, 2019, 49(2): 165-169(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201902007.htm
    [20]
    谈渊, 甘学辉, 张东剑, 等. 基于小波去噪的激光多普勒振动信号处理[J]. 激光技术, 2022, 46(1): 129-133. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014

    TAN Y, GAN X H, ZHANG D J, et al. Laser Doppler vibration signal processing based on wavelet denoising[J]. Laser Technology, 2022, 46(1): 129-133(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.01.014
    [21]
    TANG S, GUO Y, WANG X, et al. Validation of Doppler wind lidar during super typhoon Lekima[J]. Frontiers of Earth Science, 2020, 12(6): 1-15.
    [22]
    YANG S, PETERSEN G N, LWIS S V, et al. Using Doppler lidar systems to detect atmospheric turbulence in Iceland[J]. Atmospheric Measurement Techniques Discussions, 2019, 3(9): 1-16.
    [23]
    杨静. 基于双边带调制的脉冲压缩相干激光雷达技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 34-41.

    YANG J. Study on pulse-compression coherent lidar technology based on dual-band modulation[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2021: 34-41(in Chinese).
    [24]
    程正兴. 小波分析算法与应用[M]. 西安: 西安交通大学出版社, 1998: 1-10.

    CHENG Zh X. Wavelet analysis algorithms and applications[M]. Xi'an: Xi'an Jiao Tong University Press, 1998: 1-10(in Chin-ese).
    [25]
    MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [26]
    王晓兰, 王明伟. 基于小波分解和最小二乘支持向量机的短期风速预测[J]. 电网技术, 2010, 34(1): 179-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201001035.htm

    WANG X L, WANG M W. Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J]. Power System Technology, 2010, 34(1): 179-184(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201001035.htm
    [27]
    黄剑琪, 冯华君, 徐之海, 等. 边缘特征增强算法和小波分析在精确聚焦中的应用[J]. 光子学报, 2000, 29(10): 932-936. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200010014.htm

    HUANG J Q, FENG H J, XU Zh H, et al. The application of edge-enhancement algorithm and wavelet analysis in auto-focus[J]. Acta Photonica Sinica, 2000, 29(10): 932-936(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200010014.htm
    [28]
    杨丽娟, 张白桦, 叶旭桢. 快速傅里叶变换FFT及其应用[J]. 光电工程, 2004, 31(s1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC2004S1000.htm

    YANG L J, ZHANG B H, YE X Zh, et al. Fast Fourier transform FFT and its applications[J]. Opto-Electronic Engineering, 2004, 31(s1): 1-3(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC2004S1000.htm
    [29]
    万家硕. 高时带宽激光脉冲相干探测技术研究[M]. 成都: 成都信息工程大学, 2021: 34-42.

    WAN J Sh. Research on coherent detection technology of high time bandwidth laser pulse[M]. Chengdu: Chengdu University of Information Technology, 2021: 34-42(in Chinese).
    [30]
    李辉, 丁桦. 一种抗混叠和失真的小波包信号分解与重构算法[J]. 科学技术与工程, 2008, 8(20): 5580-5588. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200820014.htm

    LI H, DING H. Antialiasing and anti-distortion algorithm for signal decomposition and reconstruction based on wavelet package analysis[J]. Science Technology and Engineering, 2008, 8(20): 5580-5588(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200820014.htm
  • Cited by

    Periodical cited type(10)

    1. 石岩,刘佳. 板式换热器激光密封焊接关键技术研究. 机械工程学报. 2022(06): 101-109 .
    2. 陈琪,肖述广,王超,谢志雄,罗平,董仕节,解剑英. 薄壁TA2钛管高频焊接接头的组织和力学性能. 材料热处理学报. 2022(06): 175-182 .
    3. 张强勇,赵先锐,刘桂香,陈勇,朱征宇,倪站站. 304不锈钢激光焊接工艺及数值模拟. 电焊机. 2021(04): 1-8 .
    4. 王维东,毕宗岳,徐学利. 焊后冷却方式对S20433奥氏体不锈钢等离子弧焊接头性能的影响. 机械工程材料. 2020(01): 74-77 .
    5. 李忠,王涛,刘佳,石岩,白陈明,栗红星. 工艺参量对铝合金复合焊接接头耐蚀性的影响. 激光技术. 2019(02): 189-194 . 本站查看
    6. 董伟伟,林健,许海亮,符寒光,雷永平,王细波. SUS304不锈钢超薄片脉冲激光焊接工艺及接头的显微组织和力学性能. 机械工程材料. 2019(05): 38-42+48 .
    7. 包仁东,苏轩,陶汪. 奥氏体不锈钢激光焊接工艺研究. 应用激光. 2018(01): 26-31 .
    8. 龚五堂,雷黎明. 0.2mm不锈钢外观件激光精密焊接工艺研究. 应用激光. 2018(04): 597-600 .
    9. 周媛,蔡艳,衡昊坤,盛洁. 氮元素对奥氏体不锈钢激光焊缝气孔和性能的影响. 现代制造技术与装备. 2017(03): 87-89 .
    10. 李镇,石岩,刘佳,李言飞,李云峰,倪聪,闻龙. 镀镍层对铝/钢异种金属激光焊接质量的影响. 应用激光. 2016(03): 316-320 .

    Other cited types(6)

Catalog

    Article views (6) PDF downloads (6) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return