Advanced Search
ZENG Xu, CHEN Bojian, PAN Lei, LI Chenglong, JIANG Bo. Power grid insulator identification method based on airborne laser point cloud[J]. LASER TECHNOLOGY, 2023, 47(1): 80-86. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.012
Citation: ZENG Xu, CHEN Bojian, PAN Lei, LI Chenglong, JIANG Bo. Power grid insulator identification method based on airborne laser point cloud[J]. LASER TECHNOLOGY, 2023, 47(1): 80-86. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.012

Power grid insulator identification method based on airborne laser point cloud

More Information
  • Received Date: December 26, 2021
  • Revised Date: February 12, 2022
  • Published Date: January 24, 2023
  • To solve the problems of high density but uneven distribution of point cloud data collected by ummanned aerial vehicle (UAV) airborne lidar and incomplete information on the surface texture of insulators, a power grid insulator identification method based on airborne laser point cloud was proposed. Firstly, the histogram of the intensity value of different parts of the tower was analyzed, and the intensity value filter was used to remove most of the tower body point cloud; the principal component analysis method was then used to calculate the local point cloud eigenvalues. The local entropy function and spatial distribution characteristics based on the eigenvalues delete redundant flat area point clouds was built. Grid patching was used to avoid point cloud holes; finally, to solve the problem of low accuracy and slow speed of the traditional sample consensus initial alignment (SAC-IA) algorithm, the SAC-IA algorithm was improved to complete the pose estimation of the insulator by increasing the distance constraint relationship of the sampling point pair and adaptive adjustment parameters. The experimental results show that the insulators in the tower can be identified accurately and efficiently by using this method. And the running time is greatly reduced, and the extraction accuracy rate reaches 95.16%, which has good application value in UAV autonomous inspection route planning.
  • [1]
    刘澈, 姜勇, 姚森敬, 等. 基于多传感器信息融合的绝缘子串自动识别方法[J]. 机械设计与制造, 2019(4): 220-224. DOI: 10.3969/j.issn.1001-3997.2019.04.055

    LIU Ch, JIANG Y, YAO S J, et al. The method to automatic recognition of insulator based on multi-sensor information fusion[J]. Machinery Design & Manufacture, 2019(4): 220-224(in Chinese). DOI: 10.3969/j.issn.1001-3997.2019.04.055
    [2]
    MATIKAINEN L, LEHTOMÄKI M, AHOKAS E, et al. Remote sensing methods for power line corridor surveys[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 10-31. DOI: 10.1016/j.isprsjprs.2016.04.011
    [3]
    GUAN H, SUN X, SU Y, et al. UAV-lidar aids automatic intelligent powerline inspection[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 106987.
    [4]
    李靖, 钱建国, 王伟玺, 等. 基于机载激光点云的电力线自动提取方法[J]. 激光技术, 2021, 45(3): 362-366. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.017

    LI J, QIAN J G, WANG W X, et al. Power line automatic extraction method based on airborne laser point cloud[J]. Laser Technology, 2021, 45(3): 362-366(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.03.017
    [5]
    LIN T, LIU X. An intelligent recognition system for insulator string defects based on dimension correction and optimized faster R-CNN[J]. Electrical Engineering, 2021, 103(1): 541-549. DOI: 10.1007/s00202-020-01099-z
    [6]
    陈亮. 基于高密度机载激光点云的输电线路杆塔信息提取[D]. 锦州: 辽宁工程技术大学, 2016: 37-54.

    CHEN L. Information extraction of transmission line tower based on high density airborne laser point cloud[D]. Jinzhou: Liaoning Technical University, 2016: 37-54(in Chinese).
    [7]
    王平华, 习晓环, 王成, 等. 机载激光雷达数据中电力线的快速提取[J]. 测绘科学, 2017, 42(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201702029.htm

    WANG P H, XI X H, WANG Ch, et al. Study on power line fast extraction based on airborne LiDAR data[J]. Science of Surveying and Mapping, 2017, 42(2): 154-158(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201702029.htm
    [8]
    徐梁刚, 虢韬, 吴绍华, 等. 基于点云数据特征的电力线快速提取和重建[J]. 激光技术, 2020, 44(2): 244-249. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.019

    XU L G, GUO T, WU Sh H, et al. Fast extraction and reconstruction of power line based on point cloud data features[J]. Laser Technology, 2020, 44(2): 244-249(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.02.019
    [9]
    ORTEGA S, TRUJILLO A, SANTANA J M, et al. Characterization and modeling of power line corridor elements from LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 24-33. DOI: 10.1016/j.isprsjprs.2019.03.021
    [10]
    ZHANG R, YANG B, XIAO W, et al. Automatic extraction of high-voltage power transmission objects from UAV lidar point clouds[J]. Remote Sensing, 2019, 11(22): 2600. DOI: 10.3390/rs11222600
    [11]
    杨诗语. 基于点云的杆塔绝缘子分类方法研究[D]. 保定: 华北电力大学, 2016: 54-67.

    YANG Sh Y. Research on classification method of insulators based on point cloud[D]. Baoding: North China Electric Power University, 2020: 54-67(in Chinese).
    [12]
    ARASTOUNIA M, LICHTI D D. Automatic extraction of insulators from 3D LiDAR data of an electrical substation[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, Ⅱ-5/W2: 19-24.
    [13]
    SUN Y, CHEN X, JIAN X, et al. Identification and localization method of the insulator based on three-dimensional point cloud modeling[C]//2019 Chinese Control Conference (CCC). New York, USA: IEEE, 2019: 7051-7056.
    [14]
    刘经南, 张小红. 利用激光强度信息分类激光扫描测高数据[J]. 武汉大学学报(信息科学版), 2005, 30(3): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200503000.htm

    LIU J N, ZHANG X H. Classification of laser scanning altimetry data using laser intensity[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200503000.htm
    [15]
    刘国栋, 刘佳, 刘浪. 一种基于机载LiDAR数据的山区道路提取方法[J]. 激光技术, 2022, 46(4): 466-473. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.005

    LIU G D, LIU J, LIU L. A mountain road extraction method based on airborne LiDAR data[J]. Laser Technology, 2022, 46(4): 466-473(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.005
    [16]
    王明军, 易芳, 李乐, 等. 自适应局部邻域特征点提取和匹配的点云配准[J]. 红外与激光工程, 2021, 51(5): 421-430. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202205048.htm

    WANG M J, YI F, LI L, et al. Local neighborhood feature point extraction and matching for point cloud alignment[J]. Infrared and Laser Engineering, 2021, 51(5): 421-430(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202205048.htm
    [17]
    林松, 田林亚, 毕继鑫, 等. 基于最优邻域局部熵的点云精简算法[J]. 测绘工程, 2021, 30(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202105003.htm

    LIN S, TIAN L Y, BI J X, et al. Point cloud simplification algorithm based on local entropy of optimal neighborhood[J]. Engineering of Surveying and Mapping, 2021, 30(5): 12-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202105003.htm
    [18]
    XUAN W, HUA X, CHEN X, et al. A new progressive simplification method for point cloud using local entropy of normal angle[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(4): 581-589.
    [19]
    RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Confe-rence on Robotics and Automation. New York, USA: IEEE, 2009: 3212-3217.
    [20]
    DING Q, HE J. The detection of non-cooperative targets in space by using 3D point cloud[C]//2019 5th International Conference on Control, Automation and Robotics (ICCAR). New York, USA: IEEE, 2019: 545-549.
    [21]
    GAO G, QIAN K, MA X, et al. Object recognition and augmentation for wearable-assistive system using egocentric RGB-D sensor[C]//2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). New York, USA: IEEE, 2017: 775-780.
    [22]
    张晗, 康国华, 张琪, 等. 基于改进SAC-IA算法的激光点云粗配准[J]. 航天控制, 2019, 37(5): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ201905011.htm

    ZHANG H, KANG G H, ZHANG Q, et al. Laser point cloud coarse registration based on improved SAC-IA algorithm[J]. Aerospace Control, 2019, 37(5): 67-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ201905011.htm
    [23]
    朱琛琛, 齐林, 帖云. 基于弧长密度的自动邻域半径鉴别FPFH提取算法[J]. 计算机工程, 2019, 45(10): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201910042.htm

    ZHU Ch Ch, QI L, TIE Y. Automatic neighborhood radius identification FPFH extraction algorithm based on arc length density[J]. Computer Engineering, 2019, 45(10): 253-259(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201910042.htm
  • Cited by

    Periodical cited type(3)

    1. 李小来,杨世强,姚俊,方春华,沈彪,张曼. 基于激光点云数据的输电线路高压电塔提取方法研究. 电工材料. 2025(01): 70-73 .
    2. 朱赞,姚钘,王建琦,李阳,龙诗科. 三维激光扫描技术应用于机翼微变形检测. 测绘通报. 2023(05): 115-119 .
    3. 黄俊达,许柔娜,唐思瑶. 基于矢量化电力线的架空线路树障快速分析方法. 南方能源建设. 2023(06): 146-152 .

    Other cited types(1)

Catalog

    Article views (9) PDF downloads (6) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return