Advanced Search
ZHANG Xinyi, CHEN Maolin, LIU Xiangjiang, JI Cuicui, ZHAO Lidu. Classification of terrestrial point cloud considering point density and unknown angular resolution[J]. LASER TECHNOLOGY, 2023, 47(1): 59-66. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.009
Citation: ZHANG Xinyi, CHEN Maolin, LIU Xiangjiang, JI Cuicui, ZHAO Lidu. Classification of terrestrial point cloud considering point density and unknown angular resolution[J]. LASER TECHNOLOGY, 2023, 47(1): 59-66. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.009

Classification of terrestrial point cloud considering point density and unknown angular resolution

More Information
  • Received Date: November 11, 2021
  • Revised Date: December 19, 2021
  • Published Date: January 24, 2023
  • In order to solve the problems of unknown angular resolution and point density variation of terrestrial laser point cloud, a classification method considering density change and unknown angular resolution was proposed in this paper. To improve the traditional point density calculation method, the angular resolution estimation method of random neighborhood analysis was presented. Then we combine angular resolution to propose a grid feature extraction method which takes density variation into account. The proposed method was tested on three datasets. The result shows that the error of our method is smaller than 0.002°, which can accurately estimate the angular resolution. And compared with traditional density feature, our method can improve the overall accuracy of point cloud classification, and perform well in the extraction of cars and pole. The angle resolution can be accurately estimated with this method, and the point cloud can be classified with higher accuracy, which can provide a reference for density adaptive processing of large-scale terrestrial laser point clouds.
  • [1]
    林承达, 谢良毅, 韩晶, 等. 基于激光点云的农田玉米种植株数数目识别[J]. 激光技术, 2022, 46(2): 220-225. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.012

    LIN Ch D, XIE L Y, HAN J, et al. Recognition of the number of corn plants in farmland based on laser point cloud[J]. Laser Technology, 2022, 46(2): 220-225(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.012
    [2]
    ZHU X, SKIDMORE A K, DARVISHZADEH R, et al. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 43-50. DOI: 10.1016/j.jag.2017.09.004
    [3]
    黄帆, 李维涛, 侯阳飞, 等. 激光点云的隧道数据处理及形变分析[J]. 测绘科学, 2019, 44(5): 132-137. DOI: 10.16251/j.cnki.1009-2307.2019.05.020

    HUANG F, LI W T, HOU Y F, et al. Tuneldata processing and deformation analysis study based on laser point cloud[J]. Science of Surveying and Mapping, 2019, 44(5): 132-137(in Chinese). DOI: 10.16251/j.cnki.1009-2307.2019.05.020
    [4]
    LAI X D, YANG J R, LI Y X, et al. A building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features[J]. Remote Sensing, 2019, 11(14): 1636. DOI: 10.3390/rs11141636
    [5]
    PAN Y, DONG Y Q, WANG D L, et al. Three-dimensional reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds[J]. Remote Sensing, 2019, 11(10): 1204. DOI: 10.3390/rs11101204
    [6]
    胡海瑛, 惠振阳, 李娜. 基于多基元特征向量融合的机载LiDAR点云分类[J]. 中国激光, 2020, 47(8): 0810002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202008029.htm

    HU H Y, HUI Zh Y, LI N. Airborne LiDAR point cloud classification based on multiple-entity eigenvetor fusion[J]. Chinese Journal of Lasers, 2020, 47(8): 0810002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202008029.htm
    [7]
    薛豆豆, 程英蕾, 释小松, 等. 综合布料滤波与改进随机森林的点云分类算法[J]. 激光与光电子学进展, 2020, 57(22): 221017. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202022020.htm

    XUE D D, CHENG Y L, SHI X S, et al. Point clouds classification algorithm based on cloth filtering algorithm improved random forest[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221017(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202022020.htm
    [8]
    XU Y Sh, YE Zh, YAO W, et al. Classification of LiDAR point clouds using supervoxel-based detrended feature and perception-weighted graphical model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 13: 72-88.
    [9]
    WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 286-304. DOI: 10.1016/j.isprsjprs.2015.01.016
    [10]
    CHEN M L, LIU X J, ZHANG X Y, et al. Building extraction from terrestrial laser scanning data with density of projected points on polar grid and adaptive threshold[J]. Remote Sensing, 2021, 13(21): 4392. DOI: 10.3390/rs13214392
    [11]
    CHE E, OLSEN M J. Fast ground filtering for TLS data via scanline density analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 226-240.
    [12]
    史文中, 李必军, 李清泉. 基于投影点密度的车载激光扫描距离图像分割方法[J]. 测绘学报, 2005, 34(2): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200502001.htm

    SHI W Zh, LI B J, LI Q Q. A method for segmentation of range image captured by vehicle-borne laser scanning based on the density of projected points[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(2): 95-100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200502001.htm
    [13]
    SUN H, WANG G X, LIN H, et al. Retrieval and accuracy assessment of tree and stand parameters for Chinese fir plantation using terrestrial laser scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1993-1997.
    [14]
    CHENG X L, CHENG X J, LI Q, et al. Automatic registration of terrestrial and airborne point clouds using building outline features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 628-638.
    [15]
    LIU K Q, WANG W G, THARMARASA R, et al. Dynamic vehicle detection with sparse point clouds based on PE-CPD[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1964-1977.
    [16]
    DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[J]. ISPRS-International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011, 38(5): 97-102.
    [17]
    李健, 姚亮. 融合多特征深度学习的地面激光点云语义分割[J]. 测绘科学, 2021, 46(3): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202103020.htm

    LI J, YAO L. Ground laser point cloud semantic segmentation based on multi-feature deep learning[J]. Science of Surveying and Mapping, 2021, 46(3): 133-139(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202103020.htm
    [18]
    ATIK M E, DURAN Z, SEKER D Z. Machine learning-based supervised classification of point clouds using multiscale geometric features[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 187.
    [19]
    CHEN M L, WAN Y C, WANG M W, et al. Automatic stem detection in terrestrial laser scanning data with distance-adaptive search radius[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2968-2979.
    [20]
    CHEN M L, PAN J P, XU J Zh. Classification of terrestrial laser scanning data with density-adaptive geometric features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1795-1799.
    [21]
    HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3d. net: A new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1-W1: 91-98.
    [22]
    DONG Zh, LIANG F X, YANG B Sh, et al. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 327-342.
    [23]
    ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501.
    [24]
    张志刚, 孙立才, 汪沛. 基于激光扫描技术的行人检测方法研究[J]. 计算机科学, 2016, 43(7): 328-331. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201607064.htm

    ZHANG Zh G, SUN L C, WANG P. Research on pedestrian detection method based on laser scanning[J]. Computer Science, 2016, 43(7): 328-331(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201607064.htm
  • Cited by

    Periodical cited type(2)

    1. 朱娴. 基于光纤光栅的光电检测系统研究. 激光杂志. 2019(05): 58-62 .
    2. 景月娟, 张晓丽. 基于DSP的光电信号精密检测系统设计. 激光杂志. 2019(09): 159-162 .

    Other cited types(0)

Catalog

    Article views (5) PDF downloads (13) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return