Advanced Search
WANG Qinyu, TONG Xinglin, ZHANG Cui, DENG Chengwei, WEI Jingchuang, XU Siyu, ZHANG Bo, LIU Xiankai. Research on high-precision positioning and speed measurement method of train based on grating array[J]. LASER TECHNOLOGY, 2023, 47(1): 46-51. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.007
Citation: WANG Qinyu, TONG Xinglin, ZHANG Cui, DENG Chengwei, WEI Jingchuang, XU Siyu, ZHANG Bo, LIU Xiankai. Research on high-precision positioning and speed measurement method of train based on grating array[J]. LASER TECHNOLOGY, 2023, 47(1): 46-51. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.007

Research on high-precision positioning and speed measurement method of train based on grating array

More Information
  • Received Date: January 10, 2022
  • Revised Date: February 23, 2022
  • Published Date: January 24, 2023
  • The existing rail transit location and speed measurement method is easy to be interfered by the external environment and has instability. In order to solve these problems, based on the fiber grating with the characteristics of insulation, strong anti-interference, and corrosion resistance, a high precision train speed measurement and location system based on weak grating array combined with wave division and optical time-domain reflectometer (OTDR) technology was proposed. The absolute location requirement of grating points was realized by intensive multiplexing, and a data processing method was designed to calculate real-time speed and position according to the location results of different grating partitions and their wavelength drift rules. In order to verify the performance of the system, a simulated operating environment was built. And theoretical analysis and experimental verification were carried out. Experimental results show that centimeter-level positioning accuracy and 1 km/h speed measurement accuracy can be achieved with the proposed scheme, which has a wide application prospect in rail transit.
  • [1]
    张世聪. 适用于磁浮列车的测速定位方法研究综述[J]. 铁道标准设计, 2018, 62(10): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201810037.htm

    ZHANG Sh C. Research review of speed measurement and positioning method suitable for maglev trains[J]. Railway Standard Design, 2018, 62(10): 186-191(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201810037.htm
    [2]
    张梦乡. 中低速磁浮列车运行控制系统研究[D]. 成都: 西南交通大学, 2019: 24-56.

    ZHANG M X. Research on the operation control system of medium and low speed maglevtrains[D]. Chengdu: South West Jiaotong University, 2019: 24-56(in Chinese).
    [3]
    桂鑫, 李政颖, 王洪海, 等. 基于大规模光栅阵列光纤的分布式传感技术及应用综述[J]. 应用科学学报, 2021, 39(5): 747-776. DOI: 10.3969/j.issn.0255-8297.2021.05.004

    GUI X, LI Zh Y, WANG H H, et al. Review of distributed sensing technology and application based on large scale grating array fiber[J]. Journal of Applied Science, 2021, 39(5): 747-776 (in Chin-ese). DOI: 10.3969/j.issn.0255-8297.2021.05.004
    [4]
    LIU H L, ZHU Zh W, ZHENG Y, et al. Experimental study on an FBG strain sensor[J]. Optical Fiber Technology, 2018, 40: 144-151. DOI: 10.1016/j.yofte.2017.09.003
    [5]
    ZHANG D P, LONG Zh Q, XUE S, et al. Optimal design of the absolute positioning sensor for a high speed maglev train and research on its fault diagnosis[J]. Sensors, 2012, 12(12): 10621-10638.
    [6]
    罗桂斌. 高速磁浮定位测速系统信号处理技术研究[D]. 长沙: 国防科技大学, 2017: 47-106.

    LUO G B. Research on signal processing technology of high-speed maglev positioning and speed measurement system[D]. Changsha: National University of Defense Technology, 2017: 47-106(in Chin-ese).
    [7]
    朱东飞, 王永皎, 杨烨, 等. 基于光栅阵列的城市轨道列车定位与测速方法[J]. 光子学报, 2019, 48(11): 1148014. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201911015.htm

    ZHU D F, WANG Y J, YANG Y, et al. Location and speed measurement method of urban rail train based on grating array[J]. Acta Photonica Sinica, 2019, 48(11): 1148014(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201911015.htm
    [8]
    王高, 张梅菊, 黄漫国, 等. 基于正交光纤光栅阵列的负载感知系统研究[J]. 激光技术, 2021, 45(2): 143-146. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003

    WANG G, ZHANG M J, HUANG M G, et al. Research on load sensing system based on orthogonal fiber Bragg grating array[J]. Laser Technology, 2021, 45(2): 143-146 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003
    [9]
    LOUPOS K, AMDITIS A. Structural health monitoring fiber optic sensors[M]. New York, USA: Springer, 2017: 32-45.
    [10]
    FILOGRANO M L, GUILLEN P C, RODRIGUEZBARRIOS A, et al. Real-time monitoring of railway traffic using fiber Bragg grating sensors[J]. IEEE Sensors Journal, 2012, 12(1): 85-92. DOI: 10.1109/JSEN.2011.2135848
    [11]
    武启福. 列车光纤光栅监测系统应用研究[D]. 北京: 北京交通大学, 2015: 13-78.

    WU Q F. Application research of train fiber Bragg grating monitoring system[D]. Beijing: Beijing Jiaotong University, 2015: 13-78(in Chinese).
    [12]
    齐先胜, 任志国, 刘峻亦, 等. 激光除锈技术对高速列车集电环性能影响研究[J]. 激光技术, 2019, 43(2): 168-173. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.004

    QI X Sh, REN Zh G, LIU J Y, et al. Research on the influence of laser rust removal technology on the performance of collector rings of high-speed trains[J]. Laser Technology, 2019, 43(2): 168-173(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.02.004
    [13]
    杨岗, 王梓丞, 易立富, 等. 一种基于OFDR的高速磁浮列车定位系统[J]. 通信与信息技术, 2020(5): 72-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SCTJ202005044.htm

    YANG G, WANG Z Ch, YI L F, et al. A high-speed maglev train positioning system based on OFDR[J]. Communication and Information Technology, 2020(5): 72-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCTJ202005044.htm
    [14]
    董波, 何士雅, 胡曙阳, 等. 基于可调谐激光器的复用传感系统的研究[J]. 激光技术, 2005, 29(6): 608-610. http://www.jgjs.net.cn/article/id/14483

    DONG B, HE Sh Y, HU Sh Y, et al. Research on multiplexed sensing system based on tunable laser[J]. Laser Technology, 2005, 29(6): 608-610(in Chinese). http://www.jgjs.net.cn/article/id/14483
    [15]
    LIU F, TONG X L, ZHANG C, et al. Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing[J]. Optical Fiber Technology, 2018, 45: 47-52.
    [16]
    王梦樱, 盛荔, 陶音, 等. 激光器线宽对φ-OTDR系统性能影响的研究[J]. 激光技术, 2016, 40(4): 615-618. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.033

    WANG M Y, SHENG L, KONG Y, et al. Research on the effect of laser linewidth on the performance of φ-OTDR system[J]. Laser Technology, 2016, 40(4): 615-618(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2016.04.033
    [17]
    KOUROUSSIS G, KINET D, MOEYAERT, et al. Railway structure monitoring solutions using fibre Bragg grating sensors[J]. International Journal of Rail Transportation, 2016, 4(3): 135-150.
    [18]
    HE Zh X, ZHANG Zh Y, LI L, et al. A novel fiber Bragg grating vibration sensor with double equal-strength cantilever beams[J]. Optoelectronics Letters, 2021, 17(6): 321-327.
    [19]
    张燕君, 谢晓鹏, 毕卫红. 基于弱光栅的高速高复用分布式温度传感网络[J]. 中国激光, 2013, 40(4): 0405006. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304026.htm

    ZHANG Y J, XIE X P, BI W H. High-speed and high-multiplexing distributed temperature sensing network based on weak grating[J]. Chinese Journal of Lasers, 2013, 40(4): 0405006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201304026.htm
    [20]
    王梓. 基于弱反射光纤光栅的准分布式传感系统信息处理技术研究[D]. 武汉: 华中科技大学, 2011: 67-145.

    WANG Z. Research on information processing technology of quasi-distributed sensing system based on weak reflection fiber Bragg grating[D]. Wuhan: Huazhong University of Science and Technology, 2011: 67-145(in Chinese).

Catalog

    Article views (8) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return