Advanced Search
ZHAO Jiawei, WU Tao, LIAO Qing, PAN Zimeng, MA Ziqi. Numerical simulation of combined pulsed lasers aluminum plasma[J]. LASER TECHNOLOGY, 2022, 46(6): 835-840. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.020
Citation: ZHAO Jiawei, WU Tao, LIAO Qing, PAN Zimeng, MA Ziqi. Numerical simulation of combined pulsed lasers aluminum plasma[J]. LASER TECHNOLOGY, 2022, 46(6): 835-840. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.020

Numerical simulation of combined pulsed lasers aluminum plasma

More Information
  • Received Date: September 22, 2021
  • Revised Date: November 08, 2021
  • Published Date: November 24, 2022
  • In order to obtain the physical mechanism of the enhanced spectral performance of the combined pulse laser-induced plasma, the effects of pre-pulse parameters on the spatial and temporal distribution of parameters of the combined pulse laser-induced aluminum plasma were simulated based on the FLASH program. The spatial evolution of electron temperature, electron density, and ablative mass of aluminum plasma under different prepulse wavelength and different pre-pulse delay was obtained. The numerical simulation results show that the space range of helium plasma plume increases from 0.7cm to 3.0cm with the change of pre-pulse wavelength from 0.266μm to 1.064μm when the total energy of the pre-pulse is the same, but the ablation efficiency of the combined pulse on the target decreases seriously. During this period, the maximum electron temperature of the aluminum plasma remains stable. In addition, the combined pulse time delay should be less than 100ns. This study can provide a theoretical reference for combined pulsed laser-induced breakdown plasma spectral enhancement technology.
  • [1]
    HAO X J, SUN Y K. Simultaneous detection of multi-elements in coal based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2020, 44(1): 119-124(in Chinese).
    [2]
    EASON R W. Pulsed laser deposition of thin films: Applications-led growth of functional materials[M]. New York, USA: John Wiley and Sons Inc, 2006: 368-382.
    [3]
    ZHANG Y, ZHANG D, WU J, et al. A thermal model for nanosecond pulsed laser ablation of aluminum[J]. AIP Advances, 2017, 7(7): 075010. DOI: 10.1063/1.4995972
    [4]
    ZHANG P B, QIN Y, ZHAO J J, et al. Two-dimensional numerical simulation of nanosecond laser-ablation of aluminum material by nanosecond laser pulse[J]. Acta Physica Sinica, 2010, 59(10): 7120-7128(in Chinese). DOI: 10.7498/aps.59.7120
    [5]
    KNIGHT A K, SCHERBARTH N L, CREMERS D A, et al. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration[J]. Applied Spectroscopy, 2000, 54(3): 331-340. DOI: 10.1366/0003702001949591
    [6]
    PHIPPS C R, LUKE J R, MCDUFF G G, et al. Laser-ablation-powered mini-thruster[J]. Proceedings of the SPIE, 2002, 4760: 833-842. DOI: 10.1117/12.482038
    [7]
    ZHANG J, SUGIOKA K, WADA S, et al. Dual-beam ablation of fused quartz using 266nm and VUV lasers with different delay-times[J]. Applied Physics, 1997, A64(5): 477-481.
    [8]
    BARTHÉLEMY O, MARGOT J, CHAKER M, et al. Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma[J]. Spectrochimica Acta, 2005, B60(7/8): 905-914.
    [9]
    SHAIKH N M, HAFEEZ S, RASHID B, et al. Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd: YAG laser[J]. The European Physical Journal, 2007, D44(2): 371-379.
    [10]
    DROGOFF B L, MARGOT J, VIDAL F, et al. Influence of the laser pulse duration on laser-produced plasma properties[J]. Plasma Sources Science and Technology, 2004, 13(2): 223-230. DOI: 10.1088/0963-0252/13/2/005
    [11]
    DIWAKAR P K, HARILAL S S, FREEMAN J R, et al. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2013, B87: 65-73.
    [12]
    JAFARABADI M A, MAHDIEH M H. Investigation of phase explosion in aluminum induced by nanosecond double pulse technique[J]. Applied Surface Science, 2015, 346: 263-269. DOI: 10.1016/j.apsusc.2015.03.158
    [13]
    SCAFFIDI J, PENDER J, PEARMAN W, et al. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses[J]. Applied Optics, 2003, 42(30): 6099-6106. DOI: 10.1364/AO.42.006099
    [14]
    de GIACOMO A, DELL'AGLIO M, BRUNO D, et al. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples[J]. Spectrochimica Acta, 2008, B63(7): 805-816.
    [15]
    BENEDETTI P A, CRISTOFORETTI G, LEGNAIOLI S, et al. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration[J]. Spectrochimica Acta, 2005, B60(11): 1392-1401.
    [16]
    AMOUYE F A, FÖRSTER D J, GHORBANFEKR H, et al. Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses: An investigation of the re-deposition pheno-menon[J]. Applied Surface Science, 2021, 537: 147775. DOI: 10.1016/j.apsusc.2020.147775
    [17]
    POVARNITSYN M E, FOKIN V B, LEVASHOV P R, et al. Molecular dynamics simulation of subpicosecond double-pulse laser ablation of metals[J]. Physical Review, 2015, B92(17): 174104.
    [18]
    ORBAN C, FATENEJAD M, CHAWLA S, et al. A radiation-hydrodynamics code comparison for laser-produced plasmas: FLASH versus HYDRA and the results of validation experiments[J/OL]. (2013-06-07)[2021-09-23]. https://arxiv.org/abs/1306.1584.
    [19]
    WHITE J B S. Opening the extreme ultraviolet lithography source bottleneck developing a 13.5-nm laser-produced plasma source for the semiconductor industry[D]. Dublin, Ireland: University College Dublin, 2006: 158-169.
    [20]
    BOGAERTS A, CHEN Z, AUTRIQUE D. Double pulse laser ablation and laser induced breakdown spectroscopy: A modeling investigation[J]. Spectrochimica Acta, 2008, B63(7): 746-754.
    [21]
    MAO X, ZENG X, WEN S B, et al. Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon[J]. Spectrochimica Acta, 2005, B60(7): 960-967.
    [22]
    YIN P Q, WANG X B, WU Y X, et al. Experimental study on water droplet plasma induced by pulse Nd: YAG laser[J]. Laser Technology, 2020, 44(6): 726-731(in Chinese).
  • Cited by

    Periodical cited type(2)

    1. 刘毅,谢爱军,戴龙杰,杨勇,熊李. 激光表面织构工艺参数对温度场的影响规律研究. 工程机械. 2024(01): 23-32+7 .
    2. 张天刚,潘启越,张志强,曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析. 材料导报. 2024(24): 212-221 .

    Other cited types(2)

Catalog

    Article views (7) PDF downloads (7) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return