Advanced Search
ZHANG Yan, YU Juan, ZHANG Junxiang. Comparison of the conversion efficiency of 894.6nm frequency doubling cavity with different transmission input coupler[J]. LASER TECHNOLOGY, 2022, 46(6): 784-787. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.012
Citation: ZHANG Yan, YU Juan, ZHANG Junxiang. Comparison of the conversion efficiency of 894.6nm frequency doubling cavity with different transmission input coupler[J]. LASER TECHNOLOGY, 2022, 46(6): 784-787. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.012

Comparison of the conversion efficiency of 894.6nm frequency doubling cavity with different transmission input coupler

More Information
  • Received Date: September 08, 2021
  • Revised Date: July 21, 2022
  • Published Date: November 24, 2022
  • In order to choose a better input coupler, the conversion efficiency of the frequency doubling cavity were studied in the case of the transmittance of the input coupler to the fundamental light of 5% and 10%, respectively. 447.3nm blue light was obtained by external-cavity frequency doubling of a tapered amplifier-boosted continuous-wave diode laser at cesium D1 line. The frequency doubling cavity consists of a two-mirror standing wave cavity with a periodically poled KTiOPO4 (PPKTP) crystal inside. With a maximum fundamental power around 350mW, the frequency doubling cavity with a 5% transmittance input coupler generate 178mW blue light, corresponding to a conversion efficiency of 50.8%. With the input coupler with a 10% transmittance at the fundamental wavelength, 131mW of blue light is obtained, and the corresponding conversion efficiency is 37.4%. With a maximum input fundamental power, the output blue power was measured for 0.5h. In the frequency doubling cavity with 5% transmittance input coupler, the root mean square fluctuation is 1.4%, while the other is 0.7%. The result shows that the input coupler with 5% transmittance is better. This research is helpful for preparing high quality pump light resources to generate nonclassical light at cesium D1 line.
  • [1]
    MEHMET M, EBERLE T, STEINLECHNER S, et al. Demonstration of a quantum-enhanced fiber Sagnac interferometer[J]. Optics Letters, 2010, 35(10): 1665-1667. DOI: 10.1364/OL.35.001665
    [2]
    MEHMET M, VAHLBRUCH H, LASTZKA N, et al. Observation of squeezed states with strong photon-number oscillations[J]. Physical Review, 2010, A81(1): 013814.
    [3]
    EBERLE T, STEINLECHNER S, BAUCHROWITZ J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 2010, 104(25): 251102. DOI: 10.1103/PhysRevLett.104.251102
    [4]
    VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 11081.
    [5]
    HOFF U B, HARRIS G I, MADSEN L S, et al. Quantum-enhanced micromechanical displacement sensitivity[J]. Optics Letters, 2013, 38(9): 1413-1415. DOI: 10.1364/OL.38.001413
    [6]
    POOSER R C, LAWRIE B. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit[J]. Optica, 2015, 2(5): 393-399. DOI: 10.1364/OPTICA.2.000393
    [7]
    KIMBLE H J. The quantum internet[J]. Nature, 2008, 453: 1023-1030. DOI: 10.1038/nature07127
    [8]
    POLZIK E S, CARRI J, KIMBLE H J. Spectroscopy with squeezed light[J]. Physical Review Letters, 1992, 68(20): 3020-3023. DOI: 10.1103/PhysRevLett.68.3020
    [9]
    TURCHETTE Q A, GEORGIADES N P, HOOD C J, et al. Squeezed excitation in cavity QED: Experiment and theory[J]. Phy-sical Review, 1998, A58(5): 4056-4077.
    [10]
    APPEL J, FIGUEROA E, KORYSTOV D, et al. Quantum memory for squeezed light[J]. Physical Review Letters, 2008, 100(9): 093602. DOI: 10.1103/PhysRevLett.100.093602
    [11]
    PASCHOTTA R, KüRZ P, HENKING R, et al. 82% efficient continuous-wave frequency doubling of 1.06μm with a monolithic MgO ∶LiNbO3 resonator[J]. Optics Letters, 1994, 19(17): 1325-1327. DOI: 10.1364/OL.19.001325
    [12]
    FENG J X, LI Y M, LIU Q, et al. High-efficiency generation of a continuous-wave single-frequency 780nm laser by external-cavity frequency doubling[J]. Applied Optics, 2007, 46(17): 3593-3596. DOI: 10.1364/AO.46.003593
    [13]
    TIAN L, WANG Q W, YAO W X, et al. Experimental realization of high-efficiency blue light at 426nm by external frequency doubling resonator[J]. Acta Physica Sinica, 2020, 69(4): 044201(in Chinese). DOI: 10.7498/aps.69.20191417
    [14]
    HAN Y S, WEN X, BAI J D, et al. Generation of 130mW of 397.5nm tunable laser viaring-cavity-enhanced frequency doubling[J]. Journal of the Optical Society of America, 2014, B38(8): 1942-1947.
    [15]
    WEN X, HAN Y S, BAI J D, et al. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime[J]. Optics Express, 2014, 22(26): 32293-32300. DOI: 10.1364/OE.22.032293
    [16]
    ZHAI Y Y, FAN B, YANG S F, et al. A tunable blue light source with narrow linewidth for cold atom experiments[J]. Chinese Physics Letters, 2013, 30(4): 044209. DOI: 10.1088/0256-307X/30/4/044209
    [17]
    VILLA F, CHIUMMO A, GIACOBINO E, et al. High-efficiency blue-light generation with a ring cavity with periodically poled KTP[J]. Journal of the Optical Society of America, 2007, B24(3): 576-580.
    [18]
    DENG X, ZHANG J, ZHANG Y C, et al. Generation of blue light at 426nm by frequency doubling with a monolithic periodically poled KTiOPO4[J]. Optics Express, 2013, 21(22): 25907-25911. DOI: 10.1364/OE.21.025907
    [19]
    TIAN J F, YANG C, XUE J, et al. High-efficiency blue light generation at 426nm in low pump regime[J]. Journal of Optics, 2016, 18(5): 055506. DOI: 10.1088/2040-8978/18/5/055506
    [20]
    ZHANG Y, LIU J H, MA R, et al. Generation of quadrature squeezed vacuum light field for cesium D1 line[J]. Acta Optica Sinica, 2017, 37(5): 0519001(in Chinese). DOI: 10.3788/AOS201737.0519001
    [21]
    LUO G Z, ZHU SH N, HE J L, et al. Simultaneously efficient blue and red light generations in a periodically poled LiTaO3[J]. Applied Physics Letters, 2001, 78(20): 3006-3008. DOI: 10.1063/1.1371245
    [22]
    LIAO J, HE J L, LIU H, et al. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3[J]. Applied Physics Letters, 2003, 82(19): 3159. DOI: 10.1063/1.1570941
    [23]
    ZHDANOV B V, SHAFFER M K, LU Y L, et al. Perfomance comparison of nonlinear crystals for frequency doubling of an 894nm Cs vapor laser[C]. Proceedings of the SPIE, 2010, 7846: 32-39.
    [24]
    ZHANG Y, LIU J H, WU J Z, et al. Single-frequency tunable 447.3nm laser by frequency doubling of tapered amplified diode laser at cesium D1 line[J]. Optics Express, 2016, 24(17): 19769-19775. DOI: 10.1364/OE.24.019769
    [25]
    ZHANG Y, LIU Ch, XIAO Ch Sh, et al. Comparison of frequency locking of 894.6nm frequency doubling cavity using intra-modulation technology and Pound-Drever-Hall technology[J]. Laser Technology, 2017, 41(1): 47-50(in Chinese).
    [26]
    ZHANG Y, MA R, LIU J H, et al. Locking the frequency of the external cavity diode laser at 894.6nm using polarization spectroscopy[J]. Journal of Quantum Optics, 2017, 23(1): 87-91(in Chinese).
    [27]
    TYMINSKI J K. Photorefractive damage in KTP used as second-harmonic generator[J]. Journal of Applied Physics, 1991, 70(10): 5570-5576. DOI: 10.1063/1.350194

Catalog

    Article views (3) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return