[1]
|
CAMPBELL J H, HAWLEY-FEDDER R A, STOLZ C J, et al. NIF optical materials and fabrication technologies: An overview[C]//Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ: The National Ignition Facility. San Jose, USA: International Society for Optics and Photonics, 2004: 84-101. |
[2]
|
LIU W G, RAO P, HUA W H. Effects of thermal distortion of Si mirror irradiated by non-uniformity laser intensity on laser propagation[J]. High Power Laser and Particle Beams, 2008, 20(10): 1615-1619 (in Chinese). |
[3]
|
HU P, ZHANG J Zh. Analysis of spatio-temporal characters of thermal effects of optical components in laser system[J]. Acta Optica Sinica, 2020, 40(20): 2014001(in Chinese). doi: 10.3788/AOS202040.2014001 |
[4]
|
PEÑANO J, SPRANGLE P, TING A, et al. Optical quality of high-power laser beams in lenses[J]. Journal of the Optical Society of America, 2009, B26(3): 503-510. |
[5]
|
PENG Y F, CHENG Z H. Finite element analyses of thermal distortions of mirror substrates for high power laser[J]. High Power Laser and Particle Beams, 2005, 17(1): 5-8(in Chinese). |
[6]
|
ZHANG X M, HU D X, XU D P, et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201002(in Chinese). doi: 10.3788/CJL202148.1201002 |
[7]
|
LOU Zh K. Study on the damage mechanism of optical elements used in high energy laser system[D]. Changsha: National University of Defense Technology, 2017: 1-35 (in Chinese). |
[8]
|
DRAGGOO V G, MORTON R G, SAWICKI R H, et al. Optical coating absorption measurement for high power laser systems[J]. Proceedings of the SPIE, 1986, 622: 186-190. doi: 10.1117/12.961185 |
[9]
|
CHOW R, TAYLOR J R, WU Zh L. Absorptance behavior of optical coatings for high-average-power laser applications[J]. Applied Optics, 2000, 39(4): 650-658. doi: 10.1364/AO.39.000650 |
[10]
|
ISIDRO-OJEDA M A, ALVARADO-GIL J J, ZANUTO V S, et al. Laser induced wave-front distortion in thick-disk material: An analytical description[J]. Optical Materials, 2018, 75(1): 574-579. |
[11]
|
WANGY Y R, LI B Ch, LIU M Q. Laser-induced temperature distributions in finite radial-size optical mirror[J]. High Power Laser and Particle Beams, 2010, 22(2): 335-340 (in Chinese). doi: 10.3788/HPLPB20102202.0335 |
[12]
|
LIU M Q, LI B Ch. Analysis of temperature and deformation fields in an optical coating sample[J]. Acta Physica Sinica, 2008, 57(6): 3402-3409 (in Chinese). doi: 10.7498/aps.57.3402 |
[13]
|
ZHANG J Y, CHEN F, MA J, et al. Thermal deformation of fused silica substrates and its influence on beam quality[J]. Laser Technology, 2019, 43(3): 374-379 (in Chinese). |
[14]
|
YANG F, HUANG W, ZHANG B, et al. Temperature field distribution and thermal distortion of thin film coatings irradiated by CO2 laser[J]. Laser Technology, 2004, 28(3): 255-258 (in Chinese). |
[15]
|
LI L, SHI P, LI D L, et al. Thermal effect research of the output-coupler window in high power CO2 laser[J]. Laser Technology, 2004, 28(5): 510-513 (in Chinese). |
[16]
|
HU H P. Theory of heat conduction[M]. Hefei: University of Science and Technology of China Press, 2010: 250-260 (in Chinese). |
[17]
|
COELHO J M P, NESPEREIRA M, ABREU M, et al. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation[J]. Sensors, 2013, 13(8): 10333-10347. doi: 10.3390/s130810333 |
[18]
|
FANDERLIK I. Silica glass and its application (glass science and technology, volume 11) [M]. New York, USA: Elsevier, 1991: 213-230. |
[19]
|
McLACHLAN A D, MEYER F P. Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths[J]. Applied Optics, 1987, 26(9): 1728-1731. doi: 10.1364/AO.26.001728 |
[20]
|
ZHU Z M. Physical optics[M]. Wuhan: Huazhong University of Science and Technology Press, 2009: 31-32 (in Chinese). |
[21]
|
BORN M, WOLF E. Principles of optics[M]. 7th ed. Cambridge, UK: Cambridge University Press, 2019: 735-739. |
[22]
|
NOWACKI W. Thermoelasticity[M]. 2nd ed. New York, USA: Pergamon Press, 1986: 1-44. |
[23]
|
WANG H G. Introduction to thermoelasticity[M]. Beijing: Tsinghua University Press, 1989: 1-66 (in Chinese). |
[24]
|
YAN Z D, WANG H L. Heat stress[M]. Beijing: Higher Education Press, 1993: 98-100 (in Chinese). |
[25]
|
SUN F, CHENG Z H, ZHANG Y N, et al. Effects of clamping methods for laser mirrors on thermal deformation[J]. High Power Laser and Particle Beams, 2003, 15(8): 751-754 (in Chinese). |
[26]
|
GLASSBRENNER C J, SLACK G A. Thermal conductivity of silicon and germanium from 3°K to the melting point[J]. Physical Review, 1964, A134(4): 634-636. |
[27]
|
SHANKS H R, MAYCOCK P D, SIDLES P H, et al. Thermal conductivity of silicon from 300 to 1400°K[J]. Physical Review, 1963, 130(5): 1743-1748. doi: 10.1103/PhysRev.130.1743 |
[28]
|
OKADA Y, TOKUMARU Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500K[J]. Journal of Applied Physics, 1984, 56(2): 314-320. |
[29]
|
MILLS K C, LEE C. Thermophysical properties of silicon[J]. The Iron and Steel Institute of Japan, 2000, 40(s): S130-S138. |