Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 46 Issue 5
Sep.  2022
Article Contents
Turn off MathJax

Citation:

Experimental study on the influence of atmospheric turbulence on laser spatial transmission characteristics

  • Corresponding author: LI Xiaoying, lixiaoying@bistu.edu.cn
  • Received Date: 2021-09-06
    Accepted Date: 2021-10-13
  • In order to study the influence of atmospheric turbulence on laser transmission characteristics with different wavelengths, the theoretical calculation was carried out by using MATLAB, and a turbulence simulation box was designed for experiment. The simulation results were compared with the experimental results for theoretical analysis and experimental verification. The intensity distribution of laser wavefront was observed and recorded. The beam drift and intensity fluctuation of different wavelength laser beams under the same atmospheric conditions were measured and analyzed. The effect of atmospheric turbulence on the polarization state of linearly polarized light was experimentally observed. The experimental results show that the intensity distribution of laser wavefront is easily affected with the enhancement of atmospheric turbulence. The intensity fluctuation of laser beam decreases with the increase of wavelength, and its variance is up to 2.79×10-2, the beam drift is independent of wavelength, and its variance is up to 9.11×10-12. Secondly, linearly polarized light is affected by turbulence effect, and its light intensity changes randomly, and its change degree is more intense with the increase of turbulence intensity. The experimental results are consistent with the atmospheric turbulence theory, which has a certain reference value for laser atmospheric transmission.
  • 加载中
  • [1]

    WANG Y J, FAN Ch Y, WEI H L. Laser transmission and application in atmosphere and seawater[M]. Beijing: National Defense Industry Press, 2015: 45-51(in Chinese).
    [2]

    ISHIMARU A. Wave propagation and scattering in random media[M]. Beijing: Science Press, 1986: 674(in Chinese).
    [3]

    CHEMOV L A. Wave propagation in a random medium[M]. New York, USA: Dover Publications, 1967: 168.
    [4]

    AKIRA I. Wave propagation and scattering in random medium[M]. New York, USA: Academic Press, 1978: 573.
    [5]

    WU J, YANG Ch P, LIU J B. Theory of light transmission in the atmosphere[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2005: 128-208(in Chinese).
    [6]

    ANDREWS L C, PHILLIPS R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005: 533-600.
    [7]

    RAO R Zh. Light propagation in the turbulent atmosphere[M]. Hefei: Anhui Science & Technology Publishing House, 2005: 58-298(in Chinese).
    [8]

    YUAN Z H, ZHANG J, ZHANG W T, et al. Experimental study on transmission characteristics of dual wavelength laser in atmospheric turbulence[J]. Optical Technique, 2009, 35(5): 686-690(in Chinese).
    [9]

    NI X L, SONG L J, JIANG H L, et al. Research on turbulence stability characteristic of convection turbulence simulator[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100102(in Chinese).
    [10]

    ZHANG Y, CHANG Ch Ch, CHEN X D, et al. Propagation of Gaussian non-uniformly partially coherent beams in turbulence atmosphere[J]. Acta Photonica Sinica, 2017, 46(9): 901004(in Ch-inese). doi: 10.3788/gzxb20174609.0901004
    [11]

    QIANG X W, ZONG F, ZHAI Sh W, et al. Simulation and measurement of atmospheric turbulence in laboratory[J]. Chinese Journal of Quantum Electronic, 2020, 37(4): 506-512(in Chinese).
    [12]

    KE X Zh, ZHANG Y. Scintillation of partially coherent beam in atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(1): 0106001(in Chinese). doi: 10.3788/AOS201535.0106001
    [13]

    CHURNSIDE J H, LATAITIS R J. Wander of an optical beam in the turbulent atmosphere[J]. Applied Optics, 1990, 29(7): 926-930. doi: 10.1364/AO.29.000926
    [14]

    LI Y J, ZHU W Y, QIAN X W. Simulation of the scintillation index of plane wave propagating through general non-Kolmogorov atmospheric turbulence path[J]. Acta Optica Sinica, 2015, 35(7): 0701004(in Chinese). doi: 10.3788/AOS201535.0701004
    [15]

    ANDREWS L C, PHILLIPSR L. Laser beam propagation through random media[M]. Bellingham, USA: SPIE, 2005: 2-55.
    [16]

    RAO R Zh. Modern atmospheric optics[M]. Beijing: Science Press, 2012: 57-108(in Chinese).
    [17]

    YIN Ch X. Laser indoor simulation experiments of thermal blooming and turbulence effects[D]. Xi'an: Xidian University, 2019: 45-50(in Chinese).
    [18]

    YANG H B, XU H. Numerical simulation of atmospheric turbulence phase screen based on power spectrum inversion method[J]. Electro-optic Technology Application, 2019, 34(4): 73-76(in Chinese).
    [19]

    AN Zh. tudy on the method of spot location under atmospheric turbulence[D]. Harbin: Harbin Institute of Technology, 2019: 15-20(in Chinese).
    [20]

    YANG Sh K, WANG X Y, ZHAO L, et al. Wander of anomalous vortex beams propagating through anisotropic atmospheric turbulence[J]. Laser Technology, 2021, 45(2): 252-258(in Chinese).
    [21]

    FU Q, LIU D, ZHAN J T, et al. Research on circularly polarized characteristics by experimental in atmospheric turbulence simulation channel[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112601(in Chinese).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9) / Tables(1)

Article views(5971) PDF downloads(34) Cited by()

Proportional views

Experimental study on the influence of atmospheric turbulence on laser spatial transmission characteristics

    Corresponding author: LI Xiaoying, lixiaoying@bistu.edu.cn
  • School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China

Abstract: In order to study the influence of atmospheric turbulence on laser transmission characteristics with different wavelengths, the theoretical calculation was carried out by using MATLAB, and a turbulence simulation box was designed for experiment. The simulation results were compared with the experimental results for theoretical analysis and experimental verification. The intensity distribution of laser wavefront was observed and recorded. The beam drift and intensity fluctuation of different wavelength laser beams under the same atmospheric conditions were measured and analyzed. The effect of atmospheric turbulence on the polarization state of linearly polarized light was experimentally observed. The experimental results show that the intensity distribution of laser wavefront is easily affected with the enhancement of atmospheric turbulence. The intensity fluctuation of laser beam decreases with the increase of wavelength, and its variance is up to 2.79×10-2, the beam drift is independent of wavelength, and its variance is up to 9.11×10-12. Secondly, linearly polarized light is affected by turbulence effect, and its light intensity changes randomly, and its change degree is more intense with the increase of turbulence intensity. The experimental results are consistent with the atmospheric turbulence theory, which has a certain reference value for laser atmospheric transmission.

引言
  • 激光具有单色性好、方向性强和亮度高等突出优点,这使得它在激光武器、激光通信、光电检测等技术中得到了广泛的应用。但是由于大气湍流的存在,会使得激光大气传输过程中光束质量下降,限制了这些应用的全面发展, 所以降低大气湍流对激光传输的影响是需要迫切解决的问题。

    在20世纪60年代初, 苏联学者CHERNOV和TATARSKII分别发表了讨论光束在湍流介质中的光束展宽、光强闪烁、相干性演化等特性的著作。自此之后,各个国家均开始对大气湍流效应对激光大气传输的影响进行研究[1-7]。YUAN等人针对波长为可见光范围内的激光,进行了激光大气传输实验测试,系统地分析了不同波长的激光在相同大气条件下传输时的光束漂移和光强闪烁变化等大气湍流效应[8]。NI等人对大气相干长度进行研究,较长波长的光束的大气相干长度r0更大,大气湍流对光束影响更小[9]。ZHANG等人对高斯型非均匀关联的部分相干光束在大气湍流中的传输特性进行了研究[10]。QINAG等人在几何光学近似的条件下, 利用光学方法测量了光束强度起伏和到达角起伏[11]。KE等人利用部分相干高斯-谢尔光束模型并结合ANDREWS的唯像闪烁模型,系统分析了部分相干光在大气湍流中的光强起伏方差[12]。上述研究基本上都是针对波段在可见光的范围内的激光进行研究,对于波段在近红外范围内的激光研究的报道很少。

    本文作者对大气湍流对激光传输特性的影响进行研究,采用了不同波长的激光进行了激光大气传输实验,波长选取范围从可见光一直到近红外,记录了光斑光强分布、光束漂移和光强起伏变化的数据,并进行对比分析。同时搭建了偏振光大气传输系统,记录了大气湍流对线偏振光的偏振态的影响,为以后的深入研究提供理论基础。

1.   大气湍流理论
  • 大气不断的流动形成了温度、压强、密度、流速、形状等大小不同的气流湍涡。由于大气湍流的存在,大气折射率受到其影响从而产生随机性变化,所以光束在通过湍流的过程中,其振幅和相位均发生随机性变化,光束质量受到严重影响。

    根据Kolmogorov理论,折射率结构函数[13]为:

    式中,Cn2依赖于湍流能量耗散率,称为折射率结构常数。结构函数的这种形式仅在距离r的取值位于湍流内尺度l0和湍流外尺度L0之间时才成立。

    由于大气湍流的存在,激光在传输的过程中其光束质量受到严重的影响。出现光斑光强分布不均匀,光强闪烁起伏,光束漂移等一系列现象。

  • 由于大气湍流的存在,激光在传输过程中会发生随机性变化,其光功率在接收面上随机起伏,称为光强闪烁效应,光强闪烁效应强弱通过光强起伏方差[14-15]表示:

    式中,L为传输的距离,波数k=2π/λσI2的定义式如下:

    式中,〈〉为统计平均,I为光功率计采集得到的光强值。

  • 在研究光斑漂移的过程中,通常以光斑质心位置的变化来描述光斑漂移。I为某位置处的光强,光斑的质心定义为[16]

    进一步推导质心的漂移方差为:

    式中,ρ(x, y)是图像坐标,I(x, y)则是任意坐标点处的光强测量值。用Markov近似方法,采用Kolmogorov功率谱,忽略湍流外尺度的影响,光束漂移起伏方差可以近似表示为:

    式中,L0为激光传输距离;Dr为发射口径。

    如果光斑质心在水平和垂直方向的漂移均方差分别为σyσx,则在水平和垂直方向的漂移运动统计独立的设计下,光斑质心总的漂移方差可表示为:

2.   实验与结果分析
  • 实验系统如图 1所示。该实验系统由三部分组成,分别为激光输出端、大气湍流模拟器和激光接收端。激光发射端选用的光源分别为532nm,808nm,980nm,1064nm激光器,激光接收端选用CCD相机是由SONY公司生产的acA640-120gm Basler ace GigE,CCD相机像素数为659×494,像元尺寸为5.6μm×5.6μm,功率计为Thorlabs公司生产的S121C的光功率计,其探测器的接收波长为400nm~1100nm。在输出端,激光器发出光束后,光束经过光学系统使其准直,发散角变小,其光束质量得到提高后通过大气湍流模拟器,在接收端,光束经分光镜后,分为两束光,透射光直接入射至光电探头,反射光通过透镜汇聚后进入CCD相机[17],图像被传送到计算机记录。

    Figure 1.  Experimental system diagram

    大气湍流参数通常由大气湍流折射率结构常数来表示,反映了大气湍流的强度,而大气湍流强度会直接受大气温度场与风速场的影响。因此,在实验中通过调控热电阻温度实现对温度场的控制、调节风扇速度改变风场的变化进而实现对大气湍流强度的控制。整个实验中,温度变化控制在30℃~55℃,风速变化控制在0.1m/s~1m/s,对不同条件下的光斑光强分布、光强闪烁起伏方差及光斑漂移方差进行测量。

    由实验记录的光强数值计算得出光强闪烁起伏方差,再由光强闪烁起伏方差(见(2)式)可以计算得出大气湍流折射率结构常数。

  • 选择快速傅里叶变换谱反演法对大气湍流进行仿真,其仿真原理为: 利用大气湍流功率谱对复高斯随机矩阵进行滤波,将滤波后的函数进行傅里叶逆变换, 最终得到大气相位扰动[18]

    式中,fxmfyn为自变量函数,h(fxm, fyn)为零均值、单位方差的复高斯随机数矩阵,φK(fxm, fyn)为大气湍流功率谱密度函数。

    将模拟的高斯光斑通过大气湍流,观察光斑的光强分布情况。将CCD相机记录下的实测光斑进行灰度化的处理,可以更好地看出光斑的光强分布情况,表 1为实际探测的光斑与仿真光斑的对比情况。

    turbulence intensity
    light spot weak strength medium strength strong strength
    simulated spot
    measured spot
    processed spot

    Table 1.  Comparison of typical simulated light spot and measured light spot under different atmospheric turbulence conditions

    通过(3)式反演出此模拟装置的测量光学起伏湍流强度Cn2约在10-14m-2/3~10-17m-2/3的范围内。表 1中给出了不同大气湍流条件下典型模拟光斑和实测光斑的对比。湍流对光斑光强分布的影响很大,随着湍流的增大,光斑光强分布变得更加不均匀。通过实测光斑和模拟光斑的比较,可以看出两者结果较为一致。

  • 通过光功率计接收到的数据,结合(5)式得到光强闪烁随大气参量的变化情况。

    图 2为不同波长光束在同风速不同温度时,光强闪烁起伏方差变化关系的实验值。图 3为无风速影响下不同波长光强闪烁起伏方差的理论值。图 4为不同波长光束在同温度不同风速光强闪烁起伏方差的变化关系。通过对比图 2图 3,光强闪烁起伏方差的实验值和理论值变化规律一致,随着温度的增加,湍流强度升高,光束的光强闪烁起伏方差增大;图上曲线也显示出,随着波长的增大光束的光强闪烁起伏方差减小,说明波长越长受到湍流的影响越小。但是图 2中光强闪烁起伏方差曲线呈非线性变化,图 3光强闪烁起伏方差理论值随着湍流强度的升高呈线性变化,这是由于风速场的影响导致的。在温度为45℃时,实验值与理论值偏差最大,其中波长为532nm的光束其偏差最大,为5.1×10-3。如图 4所示,光强闪烁起伏方差随着风速的增加而减小, 即风速场减小湍流对激光束的影响,因此,出现了实验值小于理论值的结果, 差异的大小与风速场的强度有关。

    Figure 2.  Experimental values of light intensity scintillation fluctuation variance under the same wind speed and different temperatures

    Figure 3.  Theoretical value of light intensity scintillation fluctuation variance under the same wind speed and different temperatures

    Figure 4.  Flicker fluctuation variance of light intensity under different wind speeds and the same temperature

  • 利用光斑重心法[19]对CCD相机记录下的图片进行处理得出质心坐标,再结合(7)式得到光束漂移随大气参数的变化情况[20]

    图 5为不同波长光束在同风速不同温度时,光束漂移起伏方差变化关系的实验及理论值。图 6不同波长光束漂移起伏方差在给定温度时随风速的变化关系。由图 5可以看出, 实验值与理论值的光束漂移起伏方差趋势相同,随着温度的增加,湍流强度升高,光束的漂移起伏方差增大,不同波长的光束其漂移起伏方差一致,证明漂移起伏方差与波长无关,此结论与理论相同。其中理论值随着湍流强度的升高呈线性变化,实验值随着湍流强度的升高呈非线性变化,温度为45℃时,实验值与理论值偏差最大,为1.95×10-12。这是由于风速对湍流强度的影响造成的,实验值与理论值差异与风速场的强度有关。

    Figure 5.  Variance of beam drift fluctuation under different temperatures and the same wind speed

    Figure 6.  Variance of beam drift fluctuation under different wind speeds and the same temperature

  • 设计偏振光大气传输实验系统,针对大气湍流效应对线偏振光偏振态的影响进行研究[21]。如图 7所示,本系统由3个部分组成,分别为由激光器和起偏器组成的激光输出端、大气湍流模拟器、由检偏器和光功率计组成的激光接收端。激光器发射光束由起偏器调节, 控制其初始的偏振态,通过光学系统使其准直,发散角变小,随后通过大气湍流模拟装置,在接收端通过检偏器测量光束的偏振态。

    Figure 7.  Experimental system for transmission characteristics of linearly polarized light

    实验中,将波长为532nm、方位角θ=90°的垂直线偏振光作为光源,将其发出的光束通过湍流模拟装置,通过采集检偏器的数据对其偏振特性的变化情况进行总结并分析,其中每隔1min对数据进行一次采样。

    图 8图 9中分别给出了温度为30℃和50℃时,线偏振光在大气湍流的影响下其偏振特性的变化情况。其中每隔1min对数据进行一次采样。通过图 8图 9可以看出,线偏振光通过不同强度的湍流时,其偏振态变化规律基本吻合,随着改变检偏器的角度,光强呈现由小变大,再由大变小的周期性变化,检偏器角度为90°时候光强最大;将图 8图 9进行对比,线偏振光通过不同强度的湍流时,光强发生随机性变化,随着温度的提升,湍流强度增加,在检偏器为90°处开始出现微小的起伏。

    Figure 8.  Power vs. each angle of polarizer at 30℃

    Figure 9.  Power vs. each angle of polarizer at 55℃

3.   结论
  • 本文中搭建了激光大气传输测试系统,通过对大气湍流效应的理论分析,得出了大气湍流对不同波长激光束的影响,并在理论研究的基础上进行了实验分析。通过对实验结果的分析,得出了不同波长的激光束在大气传输过程中所受到的影响。搭建了偏振光大气传输系统,对偏振光在大气传输的过程中其传输特性的变化进行研究。结果表明,随着湍流增强,激光波前光强分布容易受到明显的影响;不同波长激光束的光强起伏其趋势相同,方差最高可达到2.79×10-2,但在同样的大气条件下,波长较长的激光束的光强起伏较小;光束漂移与光束波长没有明显的直接关系,其方差在3.28×10-13~8.98×10-12的范围内。上述关于光强闪烁和光斑漂移的实验结果分别与理论模型(见(2) 式和(6) 式)作了对比,发现实验结果与理论计算结果基本吻合。线偏振光通过不同大气湍流时,偏振态的变化规律基本一致,随着检偏器的旋转光强呈现由小变大,再由大变小的周期性变化,在90°时达到最大值;但是随着湍流的增强,在最大值(90°)处出现微小的起伏。本文中对激光空间传输特性的研究具有一定的现实意义。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return