HTML
-
实验系统如图 1所示。该实验系统由三部分组成,分别为激光输出端、大气湍流模拟器和激光接收端。激光发射端选用的光源分别为532nm,808nm,980nm,1064nm激光器,激光接收端选用CCD相机是由SONY公司生产的acA640-120gm Basler ace GigE,CCD相机像素数为659×494,像元尺寸为5.6μm×5.6μm,功率计为Thorlabs公司生产的S121C的光功率计,其探测器的接收波长为400nm~1100nm。在输出端,激光器发出光束后,光束经过光学系统使其准直,发散角变小,其光束质量得到提高后通过大气湍流模拟器,在接收端,光束经分光镜后,分为两束光,透射光直接入射至光电探头,反射光通过透镜汇聚后进入CCD相机[17],图像被传送到计算机记录。
大气湍流参数通常由大气湍流折射率结构常数来表示,反映了大气湍流的强度,而大气湍流强度会直接受大气温度场与风速场的影响。因此,在实验中通过调控热电阻温度实现对温度场的控制、调节风扇速度改变风场的变化进而实现对大气湍流强度的控制。整个实验中,温度变化控制在30℃~55℃,风速变化控制在0.1m/s~1m/s,对不同条件下的光斑光强分布、光强闪烁起伏方差及光斑漂移方差进行测量。
由实验记录的光强数值计算得出光强闪烁起伏方差,再由光强闪烁起伏方差(见(2)式)可以计算得出大气湍流折射率结构常数。
-
选择快速傅里叶变换谱反演法对大气湍流进行仿真,其仿真原理为: 利用大气湍流功率谱对复高斯随机矩阵进行滤波,将滤波后的函数进行傅里叶逆变换, 最终得到大气相位扰动[18]:
式中,fxm和fyn为自变量函数,h(fxm, fyn)为零均值、单位方差的复高斯随机数矩阵,φK(fxm, fyn)为大气湍流功率谱密度函数。
将模拟的高斯光斑通过大气湍流,观察光斑的光强分布情况。将CCD相机记录下的实测光斑进行灰度化的处理,可以更好地看出光斑的光强分布情况,表 1为实际探测的光斑与仿真光斑的对比情况。
turbulence intensity light spot weak strength medium strength strong strength simulated spot measured spot processed spot Table 1. Comparison of typical simulated light spot and measured light spot under different atmospheric turbulence conditions
通过(3)式反演出此模拟装置的测量光学起伏湍流强度Cn2约在10-14m-2/3~10-17m-2/3的范围内。表 1中给出了不同大气湍流条件下典型模拟光斑和实测光斑的对比。湍流对光斑光强分布的影响很大,随着湍流的增大,光斑光强分布变得更加不均匀。通过实测光斑和模拟光斑的比较,可以看出两者结果较为一致。
-
通过光功率计接收到的数据,结合(5)式得到光强闪烁随大气参量的变化情况。
图 2为不同波长光束在同风速不同温度时,光强闪烁起伏方差变化关系的实验值。图 3为无风速影响下不同波长光强闪烁起伏方差的理论值。图 4为不同波长光束在同温度不同风速光强闪烁起伏方差的变化关系。通过对比图 2和图 3,光强闪烁起伏方差的实验值和理论值变化规律一致,随着温度的增加,湍流强度升高,光束的光强闪烁起伏方差增大;图上曲线也显示出,随着波长的增大光束的光强闪烁起伏方差减小,说明波长越长受到湍流的影响越小。但是图 2中光强闪烁起伏方差曲线呈非线性变化,图 3光强闪烁起伏方差理论值随着湍流强度的升高呈线性变化,这是由于风速场的影响导致的。在温度为45℃时,实验值与理论值偏差最大,其中波长为532nm的光束其偏差最大,为5.1×10-3。如图 4所示,光强闪烁起伏方差随着风速的增加而减小, 即风速场减小湍流对激光束的影响,因此,出现了实验值小于理论值的结果, 差异的大小与风速场的强度有关。
Figure 2. Experimental values of light intensity scintillation fluctuation variance under the same wind speed and different temperatures
-
利用光斑重心法[19]对CCD相机记录下的图片进行处理得出质心坐标,再结合(7)式得到光束漂移随大气参数的变化情况[20]。
图 5为不同波长光束在同风速不同温度时,光束漂移起伏方差变化关系的实验及理论值。图 6不同波长光束漂移起伏方差在给定温度时随风速的变化关系。由图 5可以看出, 实验值与理论值的光束漂移起伏方差趋势相同,随着温度的增加,湍流强度升高,光束的漂移起伏方差增大,不同波长的光束其漂移起伏方差一致,证明漂移起伏方差与波长无关,此结论与理论相同。其中理论值随着湍流强度的升高呈线性变化,实验值随着湍流强度的升高呈非线性变化,温度为45℃时,实验值与理论值偏差最大,为1.95×10-12。这是由于风速对湍流强度的影响造成的,实验值与理论值差异与风速场的强度有关。
-
设计偏振光大气传输实验系统,针对大气湍流效应对线偏振光偏振态的影响进行研究[21]。如图 7所示,本系统由3个部分组成,分别为由激光器和起偏器组成的激光输出端、大气湍流模拟器、由检偏器和光功率计组成的激光接收端。激光器发射光束由起偏器调节, 控制其初始的偏振态,通过光学系统使其准直,发散角变小,随后通过大气湍流模拟装置,在接收端通过检偏器测量光束的偏振态。
实验中,将波长为532nm、方位角θ=90°的垂直线偏振光作为光源,将其发出的光束通过湍流模拟装置,通过采集检偏器的数据对其偏振特性的变化情况进行总结并分析,其中每隔1min对数据进行一次采样。
图 8和图 9中分别给出了温度为30℃和50℃时,线偏振光在大气湍流的影响下其偏振特性的变化情况。其中每隔1min对数据进行一次采样。通过图 8和图 9可以看出,线偏振光通过不同强度的湍流时,其偏振态变化规律基本吻合,随着改变检偏器的角度,光强呈现由小变大,再由大变小的周期性变化,检偏器角度为90°时候光强最大;将图 8和图 9进行对比,线偏振光通过不同强度的湍流时,光强发生随机性变化,随着温度的提升,湍流强度增加,在检偏器为90°处开始出现微小的起伏。