Advanced Search
LIU Jing, NIE Kunpu, YANG Jiao, WANG You, AN Guofei, DAI Kang. Role of fine structure energy exchange in Cs-N2 system[J]. LASER TECHNOLOGY, 2022, 46(5): 702-707. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.021
Citation: LIU Jing, NIE Kunpu, YANG Jiao, WANG You, AN Guofei, DAI Kang. Role of fine structure energy exchange in Cs-N2 system[J]. LASER TECHNOLOGY, 2022, 46(5): 702-707. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.021

Role of fine structure energy exchange in Cs-N2 system

More Information
  • Received Date: July 19, 2021
  • Revised Date: September 05, 2021
  • Published Date: September 24, 2022
  • In order to discuss the acceleration of energy exchange between fine structure energy levels of alkali atoms by buffer gas, the energy transfer process of fine structure collision in Cs(Rb)-N2 system were investigated experimentally by laser induced fluorescence spectroscopy. The fluorescence data of D1 and D2 lines of alkali atoms were obtained under different conditions. The experimental results show that N2 molecules are more involved in the acceleration of fine structure energy exchange in the Cs-N2 system, and the system has a high fluorescence conversion efficiency at 340K. In the Rb-N2 system, N2 molecules mainly participate in the quenching process, and the gain effect on the fine structure collision is not obvious. The results can provide reference data for the efficient operation of the semiconductor pumped alkali laser.
  • [1]
    KRUPKE W F, BEACH R J, KANZ V K, et al. Resonance transition 795nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338. DOI: 10.1364/OL.28.002336
    [2]
    YU J H, ZHU Q, QUAN H Y, et al. High power alkali vapor laser used in geo-synchronous satellite launching[J]. Laser & Optoelectronics Progress, 2007, 44(11): 18-23 (in Chinese).
    [3]
    ZHAO Ch M, WANG Y Sh, GUO L D, et al. Development of laser wireless power transmission technology[J]. Laser Technology, 2020, 44(5): 538-545 (in Chinese).
    [4]
    AUSLENDER I, YACOBY E, BARMASHENKO B, et al. Controlling the beam quality in DPALs by changing the resonator parameters[J]. Applied Physics, 2020, B126(4): 91-97.
    [5]
    BISWAL R, MISHRA G K, AGRAWAL S K, et al. Studies on the design and parametric effects of a diode pump alkali (rubidium) laser[J]. Joutnsl og Pramana, 2019, 93(4): 58-67. DOI: 10.1007/s12043-019-1817-0
    [6]
    SHEN B L, XU X Q, XIA Ch Sh, et al. Modeling of the static and flowinggas ring LD sidepumped alkali vapor amplifiers[J]. Applied Physics, 2016, B122(7): 210-216.
    [7]
    CAI H, WANG Y, XUE L P, et al. Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser[J]. Applied Physics, 2014, B117(10): 1201-1210.
    [8]
    WAICHMAN K, BARMASHENKO B, ROSENWAKS S. Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL[J]. Journal of the Optical Society of America, 2017, B34(2): 279-286.
    [9]
    ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system[J]. Optics Communications, 2015, 354(8): 256-258.
    [10]
    YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: Experimental and theoretical studies[J]. Optics Express, 2018, 26(14): 17814-17819. DOI: 10.1364/OE.26.017814
    [11]
    WEEKS D E, LEWIS C D, SCHLIE L A, et al. Temperature dependence of the fne structure mixing induced by 4He and 3He in K and Rb diode pumped alkali lasers[J]. Applied Physics, 2020, B126(4): 79-88.
    [12]
    GAVRIELIDS A, SCHLIE L A, LOPER R D, et al. Analytic treatment of beam quality and power efficiency in a highpower transverse flow diode pumped alkali laser[J]. Journal of the Optical Society of America, 2018, B35(9): 2202-2210.
    [13]
    PITZ G A, ANDERSON M D. Recent advances in optically pumped alkali lasers[J]. Applied Physics Reviews, 2017, 4(4): 041101. DOI: 10.1063/1.5006913
    [14]
    ZWEIBACK J, KRUPKE W F. 28W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 2010, 18(2): 1444-1448. DOI: 10.1364/OE.18.001444
    [15]
    WANG D G, WANG X Y, ZHOU D D, et al. Rotational and vibrational state distributions of CsH and relative reactivity in reactions of Cs(62D, 72D) with H2[J]. Chinese Physics Letters, 2010, 27(4): 043402. DOI: 10.1088/0256-307X/27/4/043402
    [16]
    ZHOU D D, WANG D G, WANG X Y, et al. Cross sections for Cs(6Dj)→Cs(7Dj') collisional transfer processes induced by H2[J]. Laser Journal, 2010, 31(1): 28-29 (in Chinese).
    [17]
    LIU Z N, LIU J, LIU B, et al. Experimental evaluation of collisional transfer cross section in Rb-N2 system[J]. Optoelectronics, 2018, 8(2): 51-58 (in Chinese). DOI: 10.12677/OE.2018.82008
    [18]
    THEODOSIOU C E. Lifetimes of alkali-metal-atom Rydberg states[J]. Physical Review, 1984, A30(6): 2881-2909.
    [19]
    ALCOCK C B, ITKIN V P, HORRIGAN M K. Vapour pressure equations for the metallic elements: 298-2500K[J]. The Canadian Journal of Metallurgy and Materials Science, 1984, 23(3): 309-313.
    [20]
    LI Y Y, YIN G Q, DAI K, et al. Fluorescence spectrum of cesium vapor resonantly excited by the 852.3nm laser line[J]. Spectroscopy and Spectral Analysis, 2006, 26(9): 1624-1626 (in Chinese).
    [21]
    KERAMATI B, MASTERS M, HUENNEKENS J. Excitation-transfer collisions in cesium vapor: Cs(5D5/2)+Cs(6S1/2)→Cs (5D3/2)+Cs(6S1/2)phys[J]. Physical Review, 1988, A38(9): 4518-4523.
  • Cited by

    Periodical cited type(3)

    1. 李鹏. 光纤传感器电路中的关键技术分析. 激光杂志. 2018(04): 62-64 .
    2. 贾世甄, 朱益清, 姚晓天. 基于双光束光源的保偏光纤定轴方法研究. 激光技术. 2018(06): 785-789 . 本站查看
    3. 何丹丹, 赵换丽. 光纤传感信号的增益均衡处理. 激光杂志. 2017(06): 97-99 .

    Other cited types(0)

Catalog

    Article views (6) PDF downloads (5) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return