[1]
|
KRUPKE W F, BEACH R J, KANZ V K, et al. Resonance transition 795nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338. doi: 10.1364/OL.28.002336 |
[2]
|
YU J H, ZHU Q, QUAN H Y, et al. High power alkali vapor laser used in geo-synchronous satellite launching[J]. Laser & Optoelectronics Progress, 2007, 44(11): 18-23 (in Chinese). |
[3]
|
ZHAO Ch M, WANG Y Sh, GUO L D, et al. Development of laser wireless power transmission technology[J]. Laser Technology, 2020, 44(5): 538-545 (in Chinese). |
[4]
|
AUSLENDER I, YACOBY E, BARMASHENKO B, et al. Controlling the beam quality in DPALs by changing the resonator parameters[J]. Applied Physics, 2020, B126(4): 91-97. |
[5]
|
BISWAL R, MISHRA G K, AGRAWAL S K, et al. Studies on the design and parametric effects of a diode pump alkali (rubidium) laser[J]. Joutnsl og Pramana, 2019, 93(4): 58-67. doi: 10.1007/s12043-019-1817-0 |
[6]
|
SHEN B L, XU X Q, XIA Ch Sh, et al. Modeling of the static and flowinggas ring LD sidepumped alkali vapor amplifiers[J]. Applied Physics, 2016, B122(7): 210-216. |
[7]
|
CAI H, WANG Y, XUE L P, et al. Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser[J]. Applied Physics, 2014, B117(10): 1201-1210. |
[8]
|
WAICHMAN K, BARMASHENKO B, ROSENWAKS S. Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL[J]. Journal of the Optical Society of America, 2017, B34(2): 279-286. |
[9]
|
ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system[J]. Optics Communications, 2015, 354(8): 256-258. |
[10]
|
YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: Experimental and theoretical studies[J]. Optics Express, 2018, 26(14): 17814-17819. doi: 10.1364/OE.26.017814 |
[11]
|
WEEKS D E, LEWIS C D, SCHLIE L A, et al. Temperature dependence of the fne structure mixing induced by 4He and 3He in K and Rb diode pumped alkali lasers[J]. Applied Physics, 2020, B126(4): 79-88. |
[12]
|
GAVRIELIDS A, SCHLIE L A, LOPER R D, et al. Analytic treatment of beam quality and power efficiency in a highpower transverse flow diode pumped alkali laser[J]. Journal of the Optical Society of America, 2018, B35(9): 2202-2210. |
[13]
|
PITZ G A, ANDERSON M D. Recent advances in optically pumped alkali lasers[J]. Applied Physics Reviews, 2017, 4(4): 041101. doi: 10.1063/1.5006913 |
[14]
|
ZWEIBACK J, KRUPKE W F. 28W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 2010, 18(2): 1444-1448. doi: 10.1364/OE.18.001444 |
[15]
|
WANG D G, WANG X Y, ZHOU D D, et al. Rotational and vibrational state distributions of CsH and relative reactivity in reactions of Cs(62D, 72D) with H2[J]. Chinese Physics Letters, 2010, 27(4): 043402. doi: 10.1088/0256-307X/27/4/043402 |
[16]
|
ZHOU D D, WANG D G, WANG X Y, et al. Cross sections for Cs(6Dj)→Cs(7Dj') collisional transfer processes induced by H2[J]. Laser Journal, 2010, 31(1): 28-29 (in Chinese). |
[17]
|
LIU Z N, LIU J, LIU B, et al. Experimental evaluation of collisional transfer cross section in Rb-N2 system[J]. Optoelectronics, 2018, 8(2): 51-58 (in Chinese). doi: 10.12677/OE.2018.82008 |
[18]
|
THEODOSIOU C E. Lifetimes of alkali-metal-atom Rydberg states[J]. Physical Review, 1984, A30(6): 2881-2909. |
[19]
|
ALCOCK C B, ITKIN V P, HORRIGAN M K. Vapour pressure equations for the metallic elements: 298-2500K[J]. The Canadian Journal of Metallurgy and Materials Science, 1984, 23(3): 309-313. |
[20]
|
LI Y Y, YIN G Q, DAI K, et al. Fluorescence spectrum of cesium vapor resonantly excited by the 852.3nm laser line[J]. Spectroscopy and Spectral Analysis, 2006, 26(9): 1624-1626 (in Chinese). |
[21]
|
KERAMATI B, MASTERS M, HUENNEKENS J. Excitation-transfer collisions in cesium vapor: Cs(5D5/2)+Cs(6S1/2)→Cs (5D3/2)+Cs(6S1/2)phys[J]. Physical Review, 1988, A38(9): 4518-4523. |