Advanced Search
LUO Yuheng, WAN Enlai, LIU Yuzhu. Online detection of smoke from the electric iron by LIBS[J]. LASER TECHNOLOGY, 2022, 46(5): 663-667. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.014
Citation: LUO Yuheng, WAN Enlai, LIU Yuzhu. Online detection of smoke from the electric iron by LIBS[J]. LASER TECHNOLOGY, 2022, 46(5): 663-667. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.014

Online detection of smoke from the electric iron by LIBS

More Information
  • Received Date: June 07, 2021
  • Revised Date: March 10, 2022
  • Published Date: September 24, 2022
  • In order to explain the local air pollution caused by the smoke produced by soldering leaded tin wire with electric soldering iron, an experimental system based on laser induced breakdown spectroscopy was designed to analyze the smoke produced by soldering leaded tin wire with electric soldering iron, and the characteristic spectral line of heavy metal lead was found in the smoke spectrum. Lead was quantitatively analyzed by internal standard method, and the detection limit of lead was 19.35×10-5 by fitting the curve. By analyzing the correlation between the plasma temperature and electron number density of lead, the validity of the experimental spectrum was verified. The results show that the experimental system and method of scene detection of electric soldering tin wire based on laser-induced breakdown spectrum have advantages of on-line, in-situ and fast when compared with the traditional chemical test method.
  • [1]
    WEI Y H, HUANG Q Ch. The toxicological effect of lead on the human health and its measures of preventing[J]. Studies of Trance Elements and Health, 2008(4): 62-64(in Chinese).
    [2]
    ZHANG Y, ZHANG T L, LI H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J]. Spectrochimica Acta, 2021, B181: 56-63. https://www.sciencedirect.com/science/article/abs/pii/S0584854721001750
    [3]
    PERSHIN S M, COLAO F, SPIZZICHINO V. Quantitative analysis of bronze samples by laser-induced breakdown spectroscopy (LIBS): A new approach, model, and experiment[J]. Laser Physics, 2006, 16(3): 455-467. DOI: 10.1134/S1054660X06030066
    [4]
    CHEN L, YOU L B, LUO X F, et al. Detection of Cd in table salt by LIBS technology[J]. Laser Technology, 2019, 43(1): 6-10(in Chinese).
    [5]
    GANG J, CHEN Y Q, YANG Y X, et al. Time-resolved high sensitivity signal detection of chrominum in aluminum alloy by laster-induced breakdown spectroscopy[J]. High Power Laser and Particle Beams, 2017, 29(9): 156-160(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-QJGY201709028.htm
    [6]
    HAN S K, PARK S H, AHN S K. Quantitative analysis of uranium in electrorecovery salt of pyroprocessing using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(5): 107-114. http://www.cnki.com.cn/Article/CJFDTotal-DNZK202105009.htm
    [7]
    XIU J Sh, DONG L L, LIN Sh, et al. Research progress of laser induced breakdown spectroscopy and other atomic spectroscopy in engine oildetection[J]. Laser Technology, 2018, 42(4): 505-510(in Chinese).
    [8]
    MONCAYO S, MANZOOR S, ROSALES J D, et al. Qualitative and quantitative analysis of milk for the detection ofadulteration by laser induced breakdown spectroscopy (LIBS)[J]. Food Chemistry, 2017, 232: 322-328. DOI: 10.1016/j.foodchem.2017.04.017
    [9]
    WANG Y, ZHAO N J, MA M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2013, 37(6): 808-811(in Chinese).
    [10]
    BAK M S, MCGANN B, CARTER C, et al. Determinants of laser-induced breakdown spectra in N2-O2 mixtures[J]. Journal of Phy-sics, 2016, D49: 125202.
    [11]
    QUE Zh B, LU W X, XIAO W, et al. LIBS analysis of heavy metal elements in suspended particulate matter in the Yangtze River[J]. Laser Journal, 2019, 40(5): 31-34 (in Chinese).
    [12]
    YANG W B, LI B C, HAN Y L, et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(10): 1011001(in Chinese). DOI: 10.3788/CJL201744.1011001
    [13]
    ZHANG L, WANG Zh, DING H B. Application of LIBS in diagnosis of aerosol[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(5): 338-346 (in Chinese).
    [14]
    KHUMAENI A, KURIHARA K, LIE Z S, et al. Analysis of sodium aerosol using transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy[J]. Current Applied Physics, 2014, 14(3): 47-54. https://www.sciencedirect.com/science/article/abs/pii/S1567173913004586?via%3Dihub
    [15]
    GUO W L, QIU R, WANG Ch F, et al. Detection of chromium in atmospheric aerosol by laser induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 745-751(in Chinese).
    [16]
    PHONGIKAROON W S. Elemental detection of cerium and gadolinium in aqueous aerosol using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2016, 70: 1700-1708. DOI: 10.1177/0003702816648327
    [17]
    HU X, ZHANG Y, DING Z H, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China[J]. Atmospheric Environment, 2012, 57(1): 146-152.
    [18]
    HU Z J, SHI Y L, NIU H Y, et al. Synthetic musk fragrances and heavy metals in snow samples of Beijing urban area, China[J]. Atmospheric Research, 2012, 104: 302-305. https://www.sciencedirect.com/science/article/pii/S0169809511002870
    [19]
    MA C H, XIAO L. Optimization method of quantitative analysis of mn in molten steel based on LIBS[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2016, 38(3): 9-13(in Chinese).
    [20]
    LIU Y, LU J D, LI P, et al. Application of internal standard method in the determination of carbon content in pulverized coal by laser induced breakdown spectroscopy[J]. Proceedings of Chinese Society for Electrical Engineering, 2009, 29(5): 1-4(in Chinese).
    [21]
    HUDDLESTONE R H, LEONARD S L. Plasma diagnostic techniques[M]. New York, USA: Academic Press, 1965: 201-264.
    [22]
    ASGILL M E, GROH S, NIEMAX K, et al. The use of multi-element aerosol particles for determining temporal variations in temperature and electron density in laser-induced plasmas in support of quantitative laser-induced breakdown spectroscopy[J]. Spectrochi-mica Acta, 2015, B109: 21-27.
  • Related Articles

    [1]WU Xiao-yan, REN Hai-lan. Erbium-doped fiber amplifier with mid-stage access and automatic gain calibration[J]. LASER TECHNOLOGY, 2013, 37(4): 529-532. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.025
    [2]TAO Ning, JIANG Hai-ming, XIAO Jun. Design of remote monitor system of fiber amplifier based on SNMP[J]. LASER TECHNOLOGY, 2011, 35(3): 368-371. DOI: 10.3969/j.issn.1001-3806.2011.03.021
    [3]YANG Chun-bo, LENG Jin-yong, LU Qi-sheng. Stimulated Brillouin scattering in Yb3+-doped double clad single-frequency fiber amplifier[J]. LASER TECHNOLOGY, 2011, 35(1): 117-121. DOI: 10.3969/j.issn.1001-3806.2011.01.032
    [4]ZHAO Zhen-yu, DUAN Kai-liang, WANG Jian-ming, ZHAO Wei, WANG Yi-shan. Comprehensive analysis of amplified spontaneous emission noise of Yb3+ -doped fiber amplifier[J]. LASER TECHNOLOGY, 2009, 33(6): 611-614,618. DOI: 10.3969/j.issn.1001-3806.2009.06.015
    [5]HAN Qun, NING Ji-ping, ZHOU Lei, ZHANG Wei-yi, WANG Jun-tao, CHEN Zheng. Impact of ASE on high power Er/Yb co-doped fiber pulse amplifiers[J]. LASER TECHNOLOGY, 2009, 33(5): 541-544. DOI: 10.3969/j.issn.1001-3806.2009.05.018
    [6]WU bo, JANG Ze-hou, HUANG Biao, ZHAO Xiao-jun, FAN Dong, ZHOU Ding-fu, HOU Tian-jin. Yb3+-doped fiber amplifier for low repeat frequency pulse[J]. LASER TECHNOLOGY, 2009, 33(5): 532-534. DOI: 10.3969/j.issn.1001-3806.2009.05.016
    [7]ZHOU Lei, NING Ji-ping, CHEN Cheng, HAN Qun, ZHANG Wei-yi, WANG Jun-tao. Stimulated Brillouin scattering in Er/Yb co-doped fiber pulse amplifiers[J]. LASER TECHNOLOGY, 2009, 33(5): 482-485. DOI: 10.3969/j.issn.1001-3806.2009.05.010
    [8]CHE Ji-bo, YANG Ya-pei, LIU Shuang, GUAN Zhou-guo, XUE Hui. Gain summarization of Er3+/Yb3+co-doped phosphate glass fiber amplifiers[J]. LASER TECHNOLOGY, 2006, 30(1): 82-85.
    [9]ZHUANG Mao-lu, ZHAO Shang-hong, DONG Shu-fu, MA Li-hua. Numerical analysis of the population distribution characteristics in Er3+/Yb3+ co-doped double-clad fiber amplifiers[J]. LASER TECHNOLOGY, 2004, 28(4): 379-382,409.
    [10]XIA Gui-jin, DUAN Jing-han, ZHAO Shang-hong, DONG Shu-fu. Performance study on double cladding Er-Yb co-doped fiber amplifiers with a reflector[J]. LASER TECHNOLOGY, 2004, 28(1): 12-15,19.
  • Cited by

    Periodical cited type(4)

    1. 张艳红,覃凤清,姜丽,文兴东,何文杰,万浩飞. 约束最小二乘滤波的高斯模糊图像复原研究. 大众科技. 2022(09): 10-13 .
    2. 孟浩,李博,杨耀森. 基于刃边法的红外图像目标信息复原. 激光与红外. 2020(03): 374-379 .
    3. 谢抢来,杨威,卢志群. 基于偏振成像的水下退化图像复原算法. 计算机仿真. 2020(12): 249-252+257 .
    4. 杨鑫,王爱学. 激光光点定位技术在移动人脸识别中的应用. 激光杂志. 2018(12): 116-120 .

    Other cited types(3)

Catalog

    Article views (8) PDF downloads (6) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return