Advanced Search
JIANG Zaifu, ZHANG Dingmei. Generation of narrow linewidth photonic microwave signal using semiconductor laser with optical feedback[J]. LASER TECHNOLOGY, 2022, 46(4): 573-578. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.022
Citation: JIANG Zaifu, ZHANG Dingmei. Generation of narrow linewidth photonic microwave signal using semiconductor laser with optical feedback[J]. LASER TECHNOLOGY, 2022, 46(4): 573-578. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.022

Generation of narrow linewidth photonic microwave signal using semiconductor laser with optical feedback

More Information
  • Received Date: April 29, 2021
  • Revised Date: May 31, 2021
  • Published Date: July 24, 2022
  • In order to study the performance of the photonic microwave signal generated by a semiconductor laser (SL) under optical injection, based on the rate equation of SL and the fiber Bragg grating (FBG) filter theory, the optical spectra, power spectra, and linewidth under different injection parameters were obtained by numerical simulation and theoretical analysis, and the effect of the feedback parameters on the microwave linewidth was also studied. Considering that the generated microwave signal has wide linewidth, a FBG optical feedback was further introduced to narrow the microwave linewidth. The results show that, for the SL subject to optical injection only, the microwave frequency can be continuously tuned and the microwave intensity can be maximized by changing the injection parameters; the microwave linewidth gradually decreases with the increase of feedback strength. Through properly adjusting the feedback parameters, the microwave linewidth can be compressed below 10kHz. The results can provide a theoretical reference for the application of semiconductor laser in the photonic microwave signals generation.
  • [1]
    ZHANG D M. Research on high quality chaotic signal acquisition based on mutual coupled ring laser[J]. Laser Technology, 2020, 44(4): 466-470 (in Chinese).
    [2]
    ZHANG D M. Study on optical feedback dynamics based on semiconductor ring lasers[J]. Laser Technology, 2019, 43(6): 789-794 (in Chinese).
    [3]
    QI X Q, LIU J M. Photonic microwave applications of the dynamics of semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1198-1211. DOI: 10.1109/JSTQE.2011.2121055
    [4]
    CHAN S C, LIU J M. Microwave frequency division and multiplication using an optically injected semiconductor laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(9): 1142-1147. DOI: 10.1109/JQE.2005.852803
    [5]
    YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335. DOI: 10.1109/JLT.2008.2009551
    [6]
    CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. DOI: 10.1038/nphoton.2007.89
    [7]
    WIECZOREK S, SIMPSON T B, KRAUSKOPF B, et al. Bifurcation transitions in an optically injected diode laser: Theory and experiment[J]. Optics Communications, 2003, 215(1): 125-134.
    [8]
    HURTADO A, HENNING I D, ADAMS M J, et al. Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser[J]. IEEE Photonics Journal, 2013, 5(4): 5900107. DOI: 10.1109/JPHOT.2013.2267535
    [9]
    WANG C, RAGHUNATHAN R, SCHIRES K, et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave ge-neration[J]. Optics Letters, 2016, 41(6): 1153-1156. DOI: 10.1364/OL.41.001153
    [10]
    PEREZ P, QUIRCE A, VALLE A, et al. Photonic generation of microwave signals using a single mode VCSEL subject to double-beam orthogonal optical injection[J]. IEEE Photonics Journal, 2015, 7(1): 5500614.
    [11]
    LIN H, OURARI S, HUANG T, et al. Photonic microwave generation in multimode VCSELs subject to orthogonal optical injection[J]. Journal of the Optical Society of America, 2017, B34(11): 2381-2389.
    [12]
    POCHET M, LOCKE T, USECHAK N G. Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection[J]. IEEE Photonics Journal, 2012, 4(5): 1881-1891. DOI: 10.1109/JPHOT.2012.2219042
    [13]
    CHENG C H, LEE C W, LIN T W, et al. Double-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement[J]. Optics Express, 2012, 20(18): 20255-20265. DOI: 10.1364/OE.20.020255
    [14]
    ZHUANG J P, CHAN S C. Phase noise characteristics of microwave signals generated by semiconductor laser dynamics[J]. Optics Express, 2015, 23(3): 2777-2797. DOI: 10.1364/OE.23.002777
    [15]
    SIMPSON T B, DOFT F. Double-locked laser diode for microwave photonics applications[J]. IEEE Photonics Technology Letters, 1999, 11(11): 1476-1478. DOI: 10.1109/68.803084
    [16]
    JI S K, XUE C P, VALLE A, et al. Stabilization of photonic microwave generation in vertical-cavity surface-emitting lasers with optical injection and feedback[J]. Journal of Lightwave Technology, 2018, 36(19): 4347-4353. DOI: 10.1109/JLT.2018.2815581
    [17]
    XUE C P, CHANG G D, FAN Y L, et al. Characteristics of microwave photonic signal generation using vertical-cavity surface-emitting lasers with optical injection and feedback[J]. Journal of the Optical Society of America, 2020, B 37(5): 1394-1400.
    [18]
    SIMPSON T B, LIU J M, ALMULLA M, et al. Linewidth sharpening via polarization rotated feedback in optically injected semiconductor laser oscillators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(14): 1500807.
    [19]
    LO K H, HWANG S K, DONATI S. Numerical study of ultrashort-optical-feedback enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics[J]. Optics Express, 2017, 25(25): 31595-31611. DOI: 10.1364/OE.25.031595
    [20]
    ZHUANG J P, CHAN S C. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization[J]. Optics Letters, 2013, 38(3): 344-346. DOI: 10.1364/OL.38.000344
    [21]
    LI S S, CHAN S C. Chaotic Time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 1800812.
    [22]
    OHTSUBO J. Semiconductor lasers (stability, instability and chaos)[M]. 3rd ed. New York, USA: Springer, 2005: 170-172.
  • Cited by

    Periodical cited type(3)

    1. 孙雯,张龙青. 基于深度卷积神经网络的产品无损分级检测方法. 激光杂志. 2025(02): 251-256 .
    2. 李霞,杨正维,黄俊伟,杨亚复,高莎. 机器学习参与山区村落影像点云分类的研究. 激光技术. 2024(02): 288-294 . 本站查看
    3. 李佳瑞,王继芬,范琳媛,石学军. 基于光谱和色谱数据碰撞融合策略的大麻油快速识别分类. 激光与光电子学进展. 2022(16): 506-513 .

    Other cited types(1)

Catalog

    Article views (7) PDF downloads (5) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return