Advanced Search
XU Hui, XIE Zhibin, LU Xiaoyan, LIU Mindong, ZHANG Zhenkai, LI Si. Peak-to-average ratio suppression algorithm for DCO-OFDM underwater visible light communication system[J]. LASER TECHNOLOGY, 2022, 46(4): 525-531. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.014
Citation: XU Hui, XIE Zhibin, LU Xiaoyan, LIU Mindong, ZHANG Zhenkai, LI Si. Peak-to-average ratio suppression algorithm for DCO-OFDM underwater visible light communication system[J]. LASER TECHNOLOGY, 2022, 46(4): 525-531. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.014

Peak-to-average ratio suppression algorithm for DCO-OFDM underwater visible light communication system

More Information
  • Received Date: June 01, 2021
  • Revised Date: January 03, 2022
  • Published Date: July 24, 2022
  • In order to solve the peak-to-average power ratio (PAPR) problem in the direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM) underwater visible light communication system, a joint PAPR suppression algorithm based on Vandermonde-like matrix (VLM) precoding and improved adaptive scaling was adopted. Firstly, the frequency domain signal was preceded by VLM to reduce the autocorrelation of the signal, and then the time domain signal was adaptively scaled to reduce the nonlinear distortion caused by light-emitting diode (LED). Finally, the PAPR suppression effect of the system was realized. The results show that when the complementary commulative distribution function was 10-3, the PAPR of the joint algorithm was reduced by 3.2dB compared with the original system. Therefore, this research is helpful to suppress the PAPR of DCO-OFDM underwater visible light communication system.
  • [1]
    QIN H R, XIE Zh B, WENG Zh H. Research on routing algorithm in underwater wireless optical communication sensor networks[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1106009(in Chinese).
    [2]
    ZENG Z, FU S, ZHANG H, et al. A survey of underwater optical wireless communications[J]. Communications Surveys & Tutorials, 2017, 19(1): 204-238.
    [3]
    SPAGNOLO G S, COⅡELLA L, LECCESE F. Underwater optical wireless communication: Overview[J]. Sensor, 2020, 20(8): 2261. DOI: 10.3390/s20082261
    [4]
    AKHOUNDI F, SALEHI J A, TASHAKORI A. Cellular underwater wireless optical CDMA network: Performance analysis and implementation concepts[J]. IEEE Transactions on Communications, 2015, 63(3): 882-891. DOI: 10.1109/TCOMM.2015.2400441
    [5]
    TANG S, DONG Y, ZHANG X. Receiver design for underwater wireless optical communication link based on APD[C]//7th International Conference on Communications and Networking in China. Kunming, China: IEEE, 2012: 301-305.
    [6]
    MI X, DONG Y. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//OCEANS 2016-Shanghai. Shanghai, China: IEEE, 2016: 1-4.
    [7]
    WANG Y, XIE S, XIE Z. FISTA-based PAPR reduction method for tone reservation's OFDM system[J]. IEEE Wireless Communications Letters, 2018, 7(3): 300-303. DOI: 10.1109/LWC.2017.2773478
    [8]
    NAKAMURA K, MIZUKOSHI I, HANAWA M. Optical wireless transmission of 405nm, 1.45Gbit/s optical IM/DD-OFDM signals through a 4.8m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566. DOI: 10.1364/OE.23.001558
    [9]
    ABDULKAFI A A, ALIAS M Y, HUSSEIN Y S. Performance analysis of DCO-OFDM in VLC system[C]//IEEE Malaysia International Conference on Communications. Kuching, Malaysia: IEEE, 2016: 163-168.
    [10]
    ZHANG Y T, ZHAO L, ZHANG F. Performance optimization of visible light OFDM communication system based on wavelet transform[J]. Laser Technology, 2020, 44(2): 261-265(in Chinese).
    [11]
    ZHANG J, ZHANG J. Research on partial linear companding transform for reducing the clipping distortion of visible light OFDM system[J]. Journal of Signal Processing, 2016, 32(1): 113-118(in Chinese).
    [12]
    MIRIYALA G, MANI V V. A new PAPR reduction technique in DCO-OFDM for visible light communication systems[J]. Optics Communications, 2020, 474: 126064. DOI: 10.1016/j.optcom.2020.126064
    [13]
    AZARNIA G, SHARIFI A A. Clipping-based PAPR reduction of optical OFDM signals using compressive sensing: Bayesian signal reconstruction approach[J]. Optical Fiber Technology, 2021, 64: 102527. DOI: 10.1016/j.yofte.2021.102527
    [14]
    ZHANG T, ZOU Y, SUN J, et al. Improved companding transform for PAPR reduction in ACO-OFDM-based VLC systems[J]. IEEE Communications Letters, 2018, 22(6): 1180-1193. DOI: 10.1109/LCOMM.2018.2827940
    [15]
    IDRIS A, SAPARI N, IDRIS M S, et al. Reduction of PAPR using block coding method and APSK modulation techniques for F-OFDM in 5G system[C]//TENCON 2018-2018 IEEE Region 10 Confe-rence. Jeju, Korea (South): IEEE, 2018: 2456-2460.
    [16]
    ZHANG J, ZHANG J, WANG D M. PAPR reduction by DCT-GCS method in visible light communication DCO-OFDM system[J]. Journal of Signal Processing, 2015, 31: 39-44(in Chinese).
    [17]
    XIAO Y, CHEN L, LI F, et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system[J]. Optical Fiber Technology, 2015, 21(1): 81-86.
    [18]
    SHARIFI A A, EMAMI H. PAPR reduction of asymmetrically clipped optical OFDM signals: Optimizing PTS technique using improved flower pollination algorithm[J]. Optics Communications, 2020, 474: 126057. DOI: 10.1016/j.optcom.2020.126057
    [19]
    BAI J R. Research on OFDM system PAPR reduction technology and its applications[D]. Xi'an: Northwestern Polytechnical University, 2018: 82-83(in Chinese).
    [20]
    BAI J R, CAO C, YANG Y, et al. Peak-to-average power ratio reduction for DCO-OFDM underwater optical wireless communication system based on an interleaving technique[J]. Optical Engineering, 2018, 57(8): 086110.
    [21]
    BAI J R, YANG S. In UOWC systems: A combined PAPR reduction method by PTS approach based on improved particle swarm optimization[J]. Optik, 2021, 232: 166581. DOI: 10.1016/j.ijleo.2021.166581
    [22]
    XU Z, YOU Z. A fast algorithm for inversion of confluent Vandermonde-like matrices involving polynomials that satisfy a three-term recurrence relation[J]. Siam Journal on Matrix Analysis & Applications, 1998, 19(3): 797-806.
    [23]
    HASAN M M. VLM precoded SLM technique for PAPR reduction in OFDM systems[J]. Wireless Personal Communications, 2013, 73(3): 791-801. DOI: 10.1007/s11277-013-1217-6
    [24]
    ABDULKAFI A A, ALIAS M Y, HUSSEIN Y S. A novel approach for PAPR reduction in OFDM-based visible light communications[C]//2017 International Conference on Platform Technology and Service (PlatCon). Busan, Korea (South): IEEE, 2017: 1-4.
  • Related Articles

    [1]CAI Xuming, LI Xiao, LIU Yuxian, HE Chunhua, LIN Junjie. Laser spot center location algorithm based on gray histogram[J]. LASER TECHNOLOGY, 2023, 47(2): 273-279. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.018
    [2]WANG Fubin, LIU Hefei, WANG Rui, ZENG Kai. Sub-pixel adaptive center extraction of line structured light stripe[J]. LASER TECHNOLOGY, 2021, 45(3): 350-356. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.015
    [3]WANG Guojun, HUANG Yaxin, ZHAO Qilin, ZHANG Dongdong. Study on the robustness of spot center based on adaptive region[J]. LASER TECHNOLOGY, 2020, 44(5): 616-622. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.015
    [4]ZHANG Jing, WU Youyu. Locating algorithm of optical fiber spot center based on FPGA[J]. LASER TECHNOLOGY, 2017, 41(5): 769-774. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.030
    [5]SUN Lihuan, ZHAO Xiaoyang, GAO Lingyu, LI Xinghua. Measurement of laser spot center position based on sub pixel positioning technology[J]. LASER TECHNOLOGY, 2017, 41(4): 511-514. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.011
    [6]WANG Jiefei, LIU Jieyu, ZHAO Han, SHEN Qiang. An improved sub-pixel positioning method of laser spot center[J]. LASER TECHNOLOGY, 2015, 39(4): 476-479. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.010
    [7]ZHANG Hai-zhuang, YAO Mei, LEI Ping, LI Peng, ZENG Qing-ping. Research of image processing method of far-field laser spots[J]. LASER TECHNOLOGY, 2013, 37(4): 460-463. DOI: 10.7510/jgjs.issn.1001-3806.2013.04.010
    [8]LI Hong-jun, XU Shu-yan, YAN De-jie. Research of remote sensing image matching with sub-pixel accuracy[J]. LASER TECHNOLOGY, 2008, 32(5): 493-495.
    [9]WANG Fang-rong, ZHAO DING-xuan, LIAO Zong-jian, ZHANG Yu. Research of laser spot center space orientation[J]. LASER TECHNOLOGY, 2005, 29(1): 87-89.
    [10]Lü Xiaoxu, Zhong Liyun, Zhang Yongan, She Canlin, Xiong Bingheng, Tung H. Jeong. Pixelated holographic display system[J]. LASER TECHNOLOGY, 2002, 26(4): 267-269.
  • Cited by

    Periodical cited type(3)

    1. 吕子尚,胡劲华,任丹萍,赵继军. 平顶型CLPG-CFBG级联结构中温度应力传感特性的研究. 激光技术. 2024(01): 65-70 . 本站查看
    2. 欧阳烨锋,崔建军,张宝武,陈恺,杨宁,方振远. 基于图像取反的同心圆环半径和圆心提取方法. 激光技术. 2024(01): 135-139 . 本站查看
    3. 刘林,黄利元,肖宝森. 光纤光栅干涉传感器位移测量误差高精度校准方法. 激光杂志. 2024(07): 97-101 .

    Other cited types(3)

Catalog

    Article views (8) PDF downloads (6) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return