Citation: | PAN Weijun, YIN Haoran, LUO Yuming, WANG Hao. Research on ARJ21 wake encounter response based on radar detection data[J]. LASER TECHNOLOGY, 2022, 46(4): 460-465. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.004 |
[1] |
BARBARESCO F, MUTUEL L. Wake vortex detection, prediction and decision support tools in sesar program[EB/OL]. (2012-05-22)[2021-07-27]. https://www.scipedia.com/public/Lavergne_et_al_2014a.
|
[2] |
DANILLE V J, DJAFRI K, FRÉDÉRIC B. Model for the calculation of the radar cross section of wake vortices of take-off and landing airplanes[EB/OL]. (2012-03-02)[2021-07-27]. http://www.wakenet3-europe.eu/fileadmin/user_upload/News%26Publications/Barbaresco_EuRAD_final.pdf.
|
[3] |
ROBINS R E, DELISI D P. NWRA AVOSS wake vortex prediction algorithm version 3.1.1[EB/OL]. (2002-06-01)[2021-07-27]. https://ntrs.nasa.gov/citations/20020060722.
|
[4] |
FISCHENBERG D. A method to validate wake vortex encounter mo-dels from flight test data[EB/OL]. (2012-05-22)[2021-07-27]. https://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/041.PDF.
|
[5] |
LUCKNER R, HÖHNE G, FUHRMANN M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687. DOI: 10.1016/j.ast.2004.06.008
|
[6] |
SARPKAYA T. New model for vortex decay in the atmosphere[EB/OL]. (2012-5-22)[2021-7-27]. https://doi.org/10.2514/2.2561.
|
[7] |
PAN W J, ZUO J J, LIANG Y A, et al. Dynamic response model and safety analysis of aircraft encountering wake[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (6): 211-214(in Chin-ese).
|
[8] |
HU H. Research on aircraft wake encounter response and risk assessment method[D]. Tianjin: Civil Aviation University of China, 2019: 1-65(in Chinese).
|
[9] |
ZHAO N N, CHEN Y, LI X Ch, et al. Safety assessment method of aircraft wake reclassification standard[J]. Journal of Safety and Environment, 2020, 20(4): 1277-1283(in Chinese).
|
[10] |
FRÉDÉRIC B, PHILIPPE J, MATHIEU K, et al. Optimising runway throughput through wake vortex detection, prediction and decision support tools[C]//2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles. New York, USA: IEEE, 2011: 27-32.
|
[11] |
SARPKAYA T. Decay of wake vortices of large a ircraft[J]. AIAA Journal, 1998, 36(9): 1671-1679. DOI: 10.2514/2.570
|
[12] |
GERZ T, HOLZÄPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. DOI: 10.1016/S0376-0421(02)00004-0
|
[13] |
HOLZAPFEL F. Probabilistic two-phase wake vortex decay and trans-port model[J]. Journal of Aircraft, 2003, 40(2): 323-331. DOI: 10.2514/2.3096
|
[14] |
PAN W J, WU Zh Y, ZHANG X L. Lidar wake vortex recognition based on k-nearest neighbor[J]. Laser Technology, 2020, 44(4): 471-477(in Chinese).
|
[15] |
ZUO J J. Research on aircraft wake encounter risks during approach phase[D]. Guanghan: Civil Aviation Flight University of China, 2019: 1-63(in Chinese).
|
[16] |
LIU P Q. Aerodynamics[M]. Beijing: Science Press, 2021: 1-608(in Chinese).
|
[17] |
ANDERSON J D, YANG Y, SONG W P. Fundamentals of aerodynamics (Bilingual Teaching Version)[M]. 5th ed. Beijing: Aviation Industry Press, 2014: 26-34.
|
[18] |
LANG S, TITTSWORTH J, BRYANT W H, et al. Progress on an ICAO wake turbulence re-categorization effort[EB/OL]. (2012-06-14)[2021-07-27]. https://doi.org/10.2514/6.2010-7682.
|
[19] |
CONDIT P M, TRACY P W. Results of the boeing company wake turbulence test program[M]. New York, USA: Plenum Press, 1971: 473-508.
|
1. |
孙雯,张龙青. 基于深度卷积神经网络的产品无损分级检测方法. 激光杂志. 2025(02): 251-256 .
![]() | |
2. |
李霞,杨正维,黄俊伟,杨亚复,高莎. 机器学习参与山区村落影像点云分类的研究. 激光技术. 2024(02): 288-294 .
![]() | |
3. |
李佳瑞,王继芬,范琳媛,石学军. 基于光谱和色谱数据碰撞融合策略的大麻油快速识别分类. 激光与光电子学进展. 2022(16): 506-513 .
![]() |