Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 46 Issue 3
May  2022
Article Contents
Turn off MathJax

Citation:

Analysis of LiDAR in a sand dust process in Inner Mongolia autonomous region

  • Received Date: 2021-01-26
    Accepted Date: 2021-08-02
  • In order to explore the structural characteristics of high spatial and temporal resolution in the process of sand and dust pollution, a typical dust weather process on 2019-10-27~2019-10-28 in Xilin Gol League of Inner Mongolia Autonomous Region was analyzed using coherent Doppler wind light detection and ranging(LiDAR), ground observation station, aerosol optical depth (AOD) data product of medium resolution image spectrometer satellite, European Centre for Medium-Range Forecasts the 5th reanalysis data (ERA5), and hybrid single particle Lagrangian integrated trajectory (HYSPLIT) backward trajectory model. The results show that the dust was affected by the high altitude cold vortex and the Mongolian cyclone, and the cold front passed over the sand source area of the central and western Mongolia and the western Inner Mongolia Autonomous Region during the high temperature period. The thermal superposition dynamic conditions were favorable for the dust to spread with the westerly wind. The surface temperature changes obviously before and after the arrival of dust. Satellite products, HYSPLIT mode combined with wind profile of LiDAR can more accurately determine the source of dust. At 02:00 on 2019-10-28, the mass concentration of ground PM10 reached the maximum 268μg/m3, and the extinction coefficient exceeded 30km-1 and reached the maximum. Radar inversion data was delayed in time. The aerosol extinction coefficient retrieved by LiDAR can reflect the changes of aerosols in the boundary layer atmosphere. The urban underlying surface weakened the dust pollution rapidly, and the grassland underlying surface where the radar located was prone to be affected by vertical wind shear to produce persistent pollution. This research is helpful to application of coherent Doppler wind LiDAR, understand the pollution process and transmission characteristics of sand and dust.
  • 加载中
  • [1]

    ZHANG X Y, ARIMOTO R, AN Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation[J]. Journal of Geophysical Research Atmospheres, 1997, D102(23): 28041-28047.
    [2]

    CHEN Y, CHEN D H, WANG H, et al. Numerical simulations of dust radiative heating on the dust storm transport and meteorological fields by using an interactive weather-dust model[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1): 38-50(in Chinese).
    [3]

    CARLSON N. Atmospheric turbidity in Saharan dust out-breaks as determined by analyses of satellite brightnessdata[J]. Monthly Weather Review, 2009, 107(3): 322-335.
    [4]

    WANG H, ZHAO T L, ZHANG X Y, et al. Dust direct radiative a-ffects on the earth-atmosphere system over east asia: Early spring cooling and late spring warming[J]. Chinese Science Bulletin, 2011, 56(11): 858-868(in Chinese). doi: 10.1360/csb2011-56-11-858
    [5]

    YUAN T G, CHEN S Y, KANG L T, et al. Temporal and spatial distribution characteristics and change trends of dust intensity in dust source regions of northern China during 1961-2010[J]. Journal of Arid Meteorology, 2016, 34(6): 927-935(in Chinese).
    [6]

    KONG F. Spatial and temporal evolution characteristics of days of disastrous dust weather in China from 1961 to 2017[J]. Journal of Arid Land Resources and Environment, 2020, 34(8): 116-123(in Chinese).
    [7]

    YANG X J, ZHANG Q, YE P L, et al. Characteristics and causes of persistent sand-dust weather in mid-march 2021 over northern China[J]. Journal of Desert Research, 2021, 41(3): 245-255(in Chinese).
    [8]

    ZHENG Y F, LIU Zh, LIU J J, et al. The spatio-temporal distribution and transport behavior of a dust event in north China[J]. Journal of Desert Research, 2013, 33(5): 1440-1452(in Chinese).
    [9]

    LIU D, ZHANG W, CHEN Y, et al. Analysis of the mechanism and transmission of dust in northwest China based on satellite remote-sensing data[J]. Journal of Desert Research, 2014, 34(6): 1605-1616(in Chinese).
    [10]

    TAN Z Y, MA M J, YANG Y, et al. A typical sand dust weather process and its influence on the air quality of Gansu[J]. Journal of Lanzhou University(Natural Sciences Edition), 2019, 55(6): 750-763(in Chinese).
    [11]

    GUO X N, WANG Y, MA X M, et al. Analysis of a typical heavy dust pollution weather in semi-arid region: A case study in eastern Qinghai[J]. Acta Scientiae Circumstantiae, 2021, 41(2): 343-353(in Chinese).
    [12]

    WANG M Zh, WEI W Sh, HE Q, et al. Preliminary study on sand-dust weather process detection using boundary wind profile radar[J]. Journal of Desert Research, 2011, 31(2): 352-356(in Chinese).
    [13]

    WEI W Sh, WANG M Z, HE Q. Wind profiler radar to monitor the dust weather[J]. Strategic Study of CAE, 2012, 14(10): 51-56 (in Chinese).
    [14]

    WANG M Zh. Detection analysis of sandstorm and precipitation process based on wind-profiling radar[D]. Lanzhou: Lanzhou University, 2014: 71-78(in Chinese).
    [15]

    LIU Ch, ZHANG B H, HUA C, et al. Application of wind profiler radar in a strong sand dust weather analysis in Beijing[J]. China Environmental Science, 2018, 38(5): 1663-1669(in Chinese).
    [16]

    WANG X Y, WANG B, WEN M Zh, et al. Statistical characteristic analysis of the boundary wind profile radar in Fujian hilly areas. Journal of the Meteorological Sciences, 2015, 35(3): 328-333(in Chinese).
    [17]

    LIU Ch, MAO W Q, FAN X, et al. Assessment of detection performance of ST wind profile radar in mountainous and hilly area[J]. Journal of Arid Meteorology, 2018, 36(2): 326-330(in Chinese).
    [18]

    LIU L L, YANG J, HUANG J, et al. Analysis of SO2 and NO2 concentration profiles in Huainan detected by a lidar[J]. Laser Technology, 2019, 43(3): 353-358(in Chinese).
    [19]

    LI M, LIU W R. Multiple-scattering effects on the visibility mea-surement of laser transmissometers in fog[J]. Laser Technology, 2020, 44(4): 503-508(in Chinese).
    [20]

    ZHU P, WANG Ch G, YAN J D, et al. Comparison of three kinds of wind data in boundary layers under complex surface conditions in Beijing[J]. Journal of Arid Meteorology, 2018, 36(5): 794-801(in Chinese).
    [21]

    SHANG X. Aerosol observation and inversion based on 1.5μm lidar[D]. Hefei: University of Science and Technology of China, 2020: 32-47(in Chinese).
    [22]

    SHEN L L. Analysis of dust transport in typical synoptic system in China[D]. Qingdao: Ocean University of China, 2010: 67-74(in Chinese).
    [23]

    DAI G Y, WANG X Y, SUN K W, et al. Calibration and retrieval of aerosol optical properties measured with coherent Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38: 1035-1045.
    [24]

    KUNZ D, GERAND J, LEEU W, et al. Inversion of lidar signals with the slope method[J]. Applied Optics, 1993, 32: 3249-3256. doi: 10.1364/AO.32.003249
    [25]

    LEGAL T, LEGAL L, LEHN W. Measuring visibility using digital remote video cameras[C]//American Meteorological Society 9th Sympon Meteorology Observations & Instrument. New York, USA: IEEE, 1994: 87-89.
    [26]

    ZHANG J R, CHEN Y B, BU L B. Analysis of a dust process in Beijing based on aerosol and atmospheric wind field lidar[J]. Laser and Optoelectronics Progress, 2018, 55(8): 080102(in Chinese). doi: 10.3788/LOP55.080102
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11) / Tables(1)

Article views(3412) PDF downloads(25) Cited by()

Proportional views

Analysis of LiDAR in a sand dust process in Inner Mongolia autonomous region

  • 1. Beijing Institute of Aeronautical Meteorology, Beijing 100085, China
  • 2. Qingdao Radium Measurement and Innovation Technology Co. Ltd., Qingdao 266101, China

Abstract: In order to explore the structural characteristics of high spatial and temporal resolution in the process of sand and dust pollution, a typical dust weather process on 2019-10-27~2019-10-28 in Xilin Gol League of Inner Mongolia Autonomous Region was analyzed using coherent Doppler wind light detection and ranging(LiDAR), ground observation station, aerosol optical depth (AOD) data product of medium resolution image spectrometer satellite, European Centre for Medium-Range Forecasts the 5th reanalysis data (ERA5), and hybrid single particle Lagrangian integrated trajectory (HYSPLIT) backward trajectory model. The results show that the dust was affected by the high altitude cold vortex and the Mongolian cyclone, and the cold front passed over the sand source area of the central and western Mongolia and the western Inner Mongolia Autonomous Region during the high temperature period. The thermal superposition dynamic conditions were favorable for the dust to spread with the westerly wind. The surface temperature changes obviously before and after the arrival of dust. Satellite products, HYSPLIT mode combined with wind profile of LiDAR can more accurately determine the source of dust. At 02:00 on 2019-10-28, the mass concentration of ground PM10 reached the maximum 268μg/m3, and the extinction coefficient exceeded 30km-1 and reached the maximum. Radar inversion data was delayed in time. The aerosol extinction coefficient retrieved by LiDAR can reflect the changes of aerosols in the boundary layer atmosphere. The urban underlying surface weakened the dust pollution rapidly, and the grassland underlying surface where the radar located was prone to be affected by vertical wind shear to produce persistent pollution. This research is helpful to application of coherent Doppler wind LiDAR, understand the pollution process and transmission characteristics of sand and dust.

引言
  • 沙尘天气是一种强风将地面沙尘吹(卷)起,使空气混浊、能见度下降的一种自然气象过程,地面吹起的大量气溶胶会向大气中输送,作为凝结核影响云的生成、发展和降水过程,影响地-气系统辐射平衡,对区域乃至全球气候产生影响[1-4]。虽然总体来看,近50年来中国沙尘源区的沙尘强度呈明显减小趋势[5-6],但是沙尘天气,甚至持续性沙尘天气依旧存在[7]

    前人利用地面常规气象观测站、卫星和模式再分析资料对沙尘传输过程进行了丰富的研究[8-11],但其时空分辨率较低,对于沙尘前后,尤其是风场变化的观测不够详实。随着风廓线雷达逐渐进入业务化应用,时空分辨率更高的风场观测再次助力了沙尘研究[12-15],但风廓线雷达易受地物杂波、天气背景场干扰,其探测能力具有明显的季节和日变化特征,且存在在0.5km以下观测精度不高的局限性[16-17]。相干多普勒测风激光雷达(light detection and ranging, LiDAR)作为一种新型的遥感监测设备,是利用大气中气溶胶粒子对激光的多普勒频移效应来测量大气风场[18-19]。对于城市复杂下垫面条件下边界层不同高度的风场观测,测风激光雷达相较于风廓线雷达,与全球定位系统(globe positioning system, GPS)探空仪测风结果具有更好的一致性[20],且拥有更低的探测盲区、更高的时空分辨率和更便于移动的优势。另外,基于观测原理,测风激光雷达还可以同时获得边界层内更精细的沙尘气溶胶光学特性[21],从而获取沙尘起沙、沉降及传输过程中不同高度的水平及垂直方向风场信息,为沙尘分析提供有力数据支撑。

    内蒙古自治区锡林郭勒盟地处中纬度西风气流带内,属于半干旱大陆性气候,降水稀少,植被稀疏,是潜在的沙源地,配合一定的气象条件,容易产生沙尘天气,且在偏北大风的影响下,沙尘极易向南传输至华北地区,对京津冀地区产生重要影响。本文中利用一台相干多普勒测风激光雷达,结合地面观测站、卫星和再分析等资料,对内蒙古自治区锡林郭勒盟锡林浩特市2019-10-27~2019-10-28的一次沙尘过程进行了分析。

1.   数据与方法
  • 本文中观测使用的是青岛镭测创芯科技有限公司的WindMast PBL型边界层风廓线测风激光雷达(以下简称“雷达”),其布设于内蒙古自治区锡林郭勒盟毛登牧场(44°8′31.70″N, 116°18′41.70″E),如图 1所示。激光波束俯仰角度为71.38°,起测高度为28m,径向距离分辨率为15m,高度分辨率为14m(径向距离分辨率15m×sin 71.38°),最大径向探测距离为3000m。本文中所用雷达数据为10min平均数据,数据产品包括水平风速、水平风向、垂直速度和消光系数等。表 1中为相关参数指标。

    Figure 1.  Field photo of LiDAR equipment

    parameters value
    detection system coherent detection of pulsed laser
    wavelength 1550nm
    detection range 30m~3000m
    wind speed range 0m/s~75m/s
    wind velocity error ≤0.5m/s
    wind direction range 0°~360°
    wind direction error <5°
    vertical resolution 15m/30m
    period detection 1s/1min/2min/5min/10min
    scanning model velocity azimuth display/Doppler beam swinging
    data products horizontal wind speed and direction, air vertical velocity, horizontal turbulence intensity, signal of noise rate, aerosol back scatter coefficient and extinction coefficient, standard deviation of the air vertical velocity, the state of radar, surface air temperature, humidity, pressure, etc.

    Table 1.  Performance specifications of coherent Doppler wind LiDAR (WindMast PBL)

  • 本文中选用内蒙古自治区锡林郭勒盟锡林浩特市2019-10-27~2019-10-28(年月日时间均为北京时间)地面观测站(站号:54102,43°57′0.36″N, 116°7′11.64″E)逐小时整点时刻的瞬时温度、地面气压、相对湿度、瞬时风速、瞬时风向、1h降水量和能见度数据,以及空气质量监测站(43°55′46.99″N, 116°6′14.08″E)的每小时颗粒物(particulate matter,PM)粒径不大于2.5μm(PM2.5)和10μm(PM10)的质量浓度和空气质量指数(air quality index, AQI)。

    地面观测站和环保监测站是距离雷达最近的地面观测站点,均位于雷达西南方的锡林浩特市区,分别与雷达相距24.4km和27.5km, 如图 2所示。考虑到同处于草原中,周围地势均为平整,气象观测站和市环保监测站所观测到的数据资料,可以近似表示测风激光雷达观测点处的地面气象要素和空气颗粒物浓度状况。同时需要注意的是,城市下垫面和测风激光雷达所处的草地下垫面仍有不同,在分析过程中要根据具体情况来处理。

    Figure 2.  Position of ground observation station relative to LiDAR

  • MODIS(moderate resolution imaging spectroradiometer)是搭载在Terra和Aqua两颗极轨卫星上的中分辨率成像光谱仪。388nm通道,1°×1°分辨率的气溶胶光学厚度(aerosol optical depth, AOD)可反映沙尘分布情况,分析沙尘的移动路径。

  • 利用ERA5-Land-hourly 0.1°×0.1°分辨率的2m气温数据用来分析沙尘天气前期及沙尘天气期间下垫面的温度情况,选取2019-10-26~2019-10-29每日14:00的2m气温数据,将后一日与前一日气温值做差,获得两日14:00的2m气温变化情况。

  • 混合单粒子拉格朗日积分轨道(hybrid single particle Lagrangian integrated trajectory,HYSPLIT)模型是由美国国家海洋和大气管理局的空气资源实验室和澳大利亚气象局在过去20年间联合研发的一种用于计算和分析大气污染物输送、扩散轨迹的专业模型。该模型已经被广泛地应用于多种污染物各个地区的传输和扩散研究中。

2.   沙尘天气过程概况
  • 2019-10-27~2019-10-29,一股强冷空气自西向东影响我国。受高空冷涡、蒙古气旋的共同影响,内蒙古自治区锡林郭勒盟出现降水过程并伴有大风和沙尘。27日20:00,500hPa天气图(见图 3a)上,贝加尔湖以北低压中心与冷中心基本重合,槽线向南延伸至内蒙古中部。850hPa天气图(见图 3b)上,位于贝加尔湖和大兴安岭之间的低涡后部,其等高线与等温线近乎垂直,等温线密集,冷平流旺盛,低涡从贝加尔湖地区向南甩下冷空气,逐渐影响东南方向下游地区;温压场配合良好,有利于低涡发展,观测点位于低涡底前部,暖湿气流较强,动力抬升条件较好,为28日凌晨降水创造了有利条件。图中, 五角星为雷达位置。

    Figure 3.  Weather situation at 2019-10-27T20:00

    27日08:00(图略)和20:00地面天气图(见图 3c)表明,贝加尔湖以南蒙古气旋发展,气旋后部等压线密集,对应有冷锋。冷锋恰好在下午至傍晚一天当中气温较高时段过境沙源地,热力叠加动力条件,有利于垂直上升运动发展,沙尘扬起,此时段锋面过境利于起沙,在内蒙古中部形成大范围沙尘天气。在西北风的引导下,沙尘自西北向东南移动。本次沙尘起源自蒙古国中西部及内蒙古自治区西部,先后经过内蒙古自治区中部、陕西北部、山西大部,随后影响到华北平原。沙尘过境使局地PM10质量浓度短时快速上升,10月28日00:00起,沙尘开始影响锡林郭勒盟。高空冷涡与锋区是激发这次沙尘暴的重要动力机制,蒙古气旋是造成这次沙尘暴的主要影响天气系统。

  • 图 4是2019-10地表沙尘质量浓度水平分布,南疆塔克拉玛干沙漠区域为明显的沙尘源区,沙尘质量浓度基本在600μg/m3以上,随着西风的输运作用,沙尘向东部的内蒙古及甘肃地区扩张,在适宜的沙尘输运条件下,会结合蒙古国源区南下的沙尘继续向东向南输运,影响我国大部分地区。

    Figure 4.  Horizontal distribution of surface dust mass concentration in 2019-10

    图 5是2019-10-27~2019-10-28 MODIS卫星388nm波段,1°×1°水平分辨率日平均AOD分布情况。AOD可用来描述气溶胶对光的衰减作用, 蓝色实心点是雷达所在位置。由图 5可以看出: 27日95°E以西的新疆东部戈壁区AOD达到2,沙尘较为严重,内蒙古西部及其以北的部分蒙古地区AOD多在0.8以上,内蒙古中部以及雷达布放站点东北的锡林郭勒盟地区AOD再次达到2;28日,新疆东部沙尘已移动至内蒙古西部,AOD依旧维持在2,沙尘强度依然较强,内蒙古中部AOD基本在0.5以下,沙尘已明显减弱,影响锡林郭勒盟的沙尘过程已基本结束。

    Figure 5.  Horizontal distribution of MODIS AOD from 2019-10-27 to 2019-10-28

    图 6展示了2019-10-26~2019-10-29每日14:00 ERA5-Land-hourly 2m的气温差ΔT。26日与27日的结果表明,沙尘源地新疆东部、内蒙古西部乃至整个沙尘能影响到的内蒙古地区,气温差均为正值,内蒙古中部比西部的气温差更大,锡林郭勒盟西部地区升温达4℃~6℃,蒙古国中部的沙尘已向南传输至我国,沙尘过后气温有所下降,气温差为负值;27日与28日的结果表明,西部沙尘源地大范围地区及蒙古国西部升温明显,蒙古国部分地区气温差达10℃以上,沙尘影响结束以及雨雪天气影响的内蒙古中部地区降温明显,大范围的沙尘气溶胶影响太阳短波辐射,锡林郭勒盟西部地区降温达10℃以上;28日与29日的结果表明,西部沙尘源地气温差整体不大,没有明显的气温波动,沙尘结束后的晴好天气使得内蒙古中部地区升温明显。

    Figure 6.  2m temperature difference from 2019-10-26 to 2019-10-29 at 14:00

    沙尘的传输高度一般在海拔2km~4km,能分辨到的沙尘最高高度为5km左右,在沙尘沉降区分辨到的沙尘主要分布在1km以下[22]图 7为利用HYS PLIT模式计算的2019-10-28T02:00, 200m, 500m和1000m的前24h的后向气流轨迹结果。气流源地均在蒙古国境内,3个高度的气流传输路径相差较大,1000m高度的气流从库苏古尔湖以西向东南方向移动,气流高度在2000m以上,随东移南下过程,高度逐渐降低;500m和200m高度气流源地位于库苏古尔湖以南200km和400km的区域,二者向东南输运过程中高度偏低,500m和1000m两股气流路径基本一致。沙尘到来前后,200m气流方向偏西南,1000m气流方向偏西北,从低空到高空,风向呈顺时针旋转,低空有弱的暖平流。图中标注的时间为世界时间。

    Figure 7.  24h backward flow trajectory at 2019-10-28T02:00

    图 8是沙尘来临前后,雷达观测到的800m高度以下的3个时刻的风向廓线(见图 8a)和风速(见图 8b)。其中28日02:00为沙尘影响时间,雷达探测高度较低; 27日16:00沙尘来临前,风向为西南风,风速主要范围为15m/s~20m/s;28日02:00沙尘影响时,风向略向北偏转,风速增大至20m/s以上;28日16:00沙尘过程结束后,风向已转为西北风,风速降至10m/s以下。

    Figure 8.  LiDAR wind direction and speed profile

    图 9为2019-10-27~2019-10-28每小时地面站监测结果。

    Figure 9.  Hourly surface monitoring results from 2019-10-27 to 2019-10-28

    2019-10-27T00:00~10:00,沙尘影响前,颗粒物质量浓度处于较低水平,均处于50μg/m3以下。温度逐渐上升,相对湿度随之降低,气压有所减小,地面风向为西南风,风速有所增大,10:00瞬时风速增大至6m/s。能见度条件良好,维持在30km。

    2019-10-27T10:00~2019-10-28T02:00,沙尘开始影响并逐渐增强,PM2.5质量浓度基本维持不变,PM10质量浓度显著上升,从27日10:00的11μg/m3升高至268μg/m3。此时段随着太阳辐射增强,温度不断上升,在27日16:00达最高值11.8℃,相对湿度随之继续降低;之后太阳辐射逐渐减小,地面温度降低,同时西南风逐渐增强,相对湿度有所上升,受蒙古气旋影响,地面气压持续降低,最低达到了888.7hPa。地面风向仍为西南风,地面风速先减小后增强,风速最大达到11m/s,较强风速有利于沙尘输送。能见度逐渐减小,但其变化滞后于PM10质量浓度变化。

    2019-10-28T02:00~06:00,PM10质量浓度从268μg/m3迅速减小为22μg/m3,之后PM10质量浓度仍维持在30μg/m3以下,沙尘影响基本结束。此时段随着干冷空气影响,温度平稳下降,28日16:00温度较前一日同时刻最高温度降低了12℃。2019-10-28T03:00~06:00冷空气影响前期,相对湿度较高,维持在80%以上,观测点处于冷锋锋后,有小的锋面降水天气,湿沉降作用对地面PM10质量浓度下降有一定的正贡献;之后随着干冷空气持续影响,相对湿度逐渐减小。受冷高压影响,地面气压逐渐上升,最高达到900.9hPa。2019-10-28T02:00~18:00,风向转为偏西风和西北风为主,风速多在6m/s以上,18:00~23:00风向逐渐逆转为东南风,风速也有所减小。此时段能见度随着PM10质量浓度降低而升高,地面能见度变化和PM10质量浓度变化之间,表现出较为明显的负相关关系。

  • 相干多普勒测风激光雷达可以用来反演气溶胶光学特性[23-25],ZHANG等人[26]发现,地面PM10质量浓度与200m高度消光系数随时间变化存在较好的一致性,本文中采取同样高度消光系数与地面PM10质量浓度进行分析。图 10为2019-10-27~2019-10-28PM10质量浓度与200m高度气溶胶消光系数。两者变化关系较为吻合,但是在2019-10-27T00:00~2019-10-28T02:00阶段,消光系数变化明显滞后于地面PM10质量浓度变化,这是因为锡林郭勒盟离沙源地较近,沙尘吹起后,近地面首先受到影响,之后在气流混合作用下,低空大气也逐渐受到沙尘影响,消光系数陡升,在28日02:00时, 地面PM10质量浓度达最大值268μg/m3,消光系数超过30km-1,达到最大值。从28日02:00开始,地面PM10质量浓度和消光系数均开始迅速下降,28日06:00, 沙尘过程基本结束。

    Figure 10.  Time sequence diagram of PM10 mass concentration and aerosol extinction coefficient at 200m height from 2019-10-27 to 2019-10-28

    图 11是2019-10-27~2019-10-28雷达反演获得的气溶胶消光系数、垂直气流速度、垂直风切变和风羽。沙尘来临前,高空明显风速带的建立以及较强垂直风切变的存在,有利于高空动量下传和大气不稳定度的维持。从垂直风切变的分布特征来看,2019-10-27T00:00~09:00,400m以下低空的垂直风切变很强,在0.5s-1左右,此高度以上为明显的偏西风,以下为明显的偏西南风,大气不稳定,随着风向稳定为西南风,2019-10-27T12:00~16:00垂直风切变较弱,在80.2s-1以下,大气层结较稳定;2019-10-27T16:00~2019-10-28T00:00,400m以下垂直风切变再次增强至0.5s-1左右,此时段也伴随着高空风速不断增大和动量下传。28日03:00~15:00沙尘影响时段,400m以下下沉气流旺盛,气溶胶消光系数骤增数十倍,沙尘垂直风切变呈现出逐渐减小的趋势,2019-10-28T10:00~15:00基本维持在0.1s-1左右,大气逐渐稳定,沙尘过程随之减弱,继而结束。

    Figure 11.  Aerosol extinction coefficient, vertical velocity, vertical wind shear and wind plume by wind lidar from 2019-10-27 to 2019-10-28

    结合地面站和雷达观测结果,二者的要素随时间变化的特征并不完全匹配,2019-10-28T02:00,地面观测结果显示PM10质量浓度已达到高峰,而雷达的气溶胶消光系数则是从2019-10-28T03:00开始迅速增大,且持续到15:00左右。原因包括观测站点之间存在大于2km的距离,另外,雷达所处位置的地理环境为草原牧场,下垫面多为草本植物和沙尘颗粒,在受到大气不稳定条件影响下,从地表向高空极易形成持续性污染;地面观测站位于锡林浩特市区,地面观测结果直接受到高空污染物沉降的影响,从地表向上抬升的污染物较草原牧场明显偏少。

3.   结论
  • 2019-10-27~2019-10-28,受高空冷涡、蒙古气旋的共同影响,内蒙古锡林郭勒盟出现降水过程并伴有大风和沙尘。冷锋恰好在下午至傍晚一天当中气温较高时段过境沙源地,热力叠加动力条件,有利于垂直上升运动发展,沙尘扬起,此时段锋面过境利于起沙,在内蒙古中部形成大范围沙尘天气。

    MODIS反演的AOD显示, 2019-10主要沙尘源区为南疆塔克拉玛干沙漠,日平均AOD也可大致表现出沙尘传输过程,不过需要结合HYSPLIT模式的后向气流轨迹和雷达风廓线才可以更好地确定沙尘源地及移动路径。

    地面观测的PM10质量浓度和雷达反演的200m高度气溶胶消光系数随时间变化一致性良好,雷达反演的气溶胶消光系数可反应边界层大气中气溶胶的变化情况。沙尘来临前,高空明显风速带的建立以及较强垂直风切变的存在,有利于高空动量下传和大气不稳定度的维持。沙尘来临前,此特征非常明显,并且伴随着风速减弱和下沉气流增强,沙尘过程中存在明显的风向转向。

    城市下垫面和草地下垫面对于沙尘的响应状况存在明显区别。城市下垫面沙尘持续时间更短,垂直风切变使得草地下垫面更易扬起沙尘,造成持续性污染。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return