Advanced Search
JIANG Xiaowei, ZHU Zhen, ZHENG Shengmei. Research on improving LED luminous efficiency by using metal grating[J]. LASER TECHNOLOGY, 2022, 46(3): 368-373. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.011
Citation: JIANG Xiaowei, ZHU Zhen, ZHENG Shengmei. Research on improving LED luminous efficiency by using metal grating[J]. LASER TECHNOLOGY, 2022, 46(3): 368-373. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.011

Research on improving LED luminous efficiency by using metal grating

More Information
  • Received Date: March 16, 2021
  • Revised Date: April 29, 2021
  • Published Date: May 24, 2022
  • In order to improve the luminous efficiency of light-emitting diode (LED), a metal grating was placed on the light emitting surface of LED. The theoretical analysis based on finite difference time domain method shows that the transmittance of metal grating to the wavelength of 460nm is close to 1 after the optimization of the grating, and the light extraction efficiency of LED can be improved. The optimized metal grating can simultaneously excite surface plasmons polariton and the localized surface plasmon at 460nm, which is helpful to improve the internal quantum efficiency of LED. The luminous efficiency of LED with metal grating structure at 460nm is 30 times higher than that of LED with only a thin layer of Ag on light-emitting surface. The research can provide theoretical guidance for the preparation of high luminous efficiency LED in the future.
  • [1]
    MARIANA S, GULINK J, HAMDANA G, et al. Vertical GaN nanowires and nanoscale light-emitting-diode arrays for lighting and sensing applications[J]. ACS Applied Nano Materials, 2019, 2(7): 41333-4142. DOI: 10.1021/acsanm.9b00587
    [2]
    JIANG L, LIU H, YAN J Y, et al. Research on screening methods of LED filament[J]. Acta Metrologica Sinica, 2019, 40 (4): 569- 575 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JLXB201904005.htm
    [3]
    JIANG X W, ZHAO J W, WU H. Design and optimization of flip chip light emitting diode with high light extraction efficiency[J]. Laser & Optoelectronics Progress, 2018, 55(9): 092302 (in Chinese). DOI: 10.3788/LOP55.092302
    [4]
    HU P, PATHAL P H, ZHANG H, et al. High speed LED-to-camera communication using color shift keying with flicker mitigation[J]. IEEE Transactions on Mobile Computing, 2020, 19(7): 1603-1617. DOI: 10.1109/TMC.2019.2913832
    [5]
    LI J J, CAO H K, DENG J, et al. Realization of 655nm micro-RCLED working at low driving current for micro-displays[J]. Acta Optica Sinica, 2020, 40(5): 1526002(in Chinese).
    [6]
    JIANG D F, JIANG X W, ZHANG L N. Realization of single polarization output and high light extraction efficiency of GaN based blue LED[J]. Laser Technology, 2019, 43(2): 184-188 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201902007.htm
    [7]
    LI Zh Q, WANG C, LI W Ch. Improving LED luminescence properties by using Ag/P-GaN double grating[J]. Optics and Precision Engineering, 2017, 25(5): 1185-1191 (in Chinese). DOI: 10.3788/OPE.20172505.1185
    [8]
    HUANG H, HU H, WANG H, et al. Enhanced light output of dipole source in GaN-based nanorod light-emitting diodes by silver localized surface plasmon[J]. Journal of Nanomaterials, 2014, 10(41): 180675. DOI: 10.1155/2014/180765
    [9]
    LIANG Z, TENG J, CHUA S J, et al. Design and fabrication of subwavelength nanogratings based light-emitting diodes[J]. Applied Physics, 2011, A103(3): 827-830. http://www.researchgate.net/profile/Soo_Chua/publication/225323616_Design_and_fabrication_of_subwavelength_nanogratings_based_light-emitting_diodes/links/0912f506ac0c11e9d1000000.pdf
    [10]
    HUANG H W, LAI F I, HUANG J K, et al. Enhancement of light output power of GaN-based light-emitting diodes using a SiO2 nano-scale structure on a P-GaN surface[J]. Semiconductor Science & Technology, 2010, 25(25): 65007. DOI: 10.1088/0268-1242/25/6/065007
    [11]
    BABIKER S G, SIDAHMED M O, YONG S, et al. Polarized GaN-basedlight-emitting diode with a silver sub wavelength grating and dielectric layer[J]. Middle East Journal of Entific Research, 2014, 22(2): 193-198. http://www.idosi.org/mejsr/mejsr22(2)14/4.pdf
    [12]
    WIERER J J, STEIGERWALD D A, KRAMES M R, et al. High-power AlGaInN flip-chip light-emitting diodes[J]. Applied Physics Letters, 2001, 78(22): 3379-3381. DOI: 10.1063/1.1374499
    [13]
    SEOK M S, YOO S J, CHOE J H, et al. Light extraction efficiency enhancement using surface-structured light-emitting diodes with a subwavelength coating[J]. Journal of the Korean Physical Society, 2016, 68(3): 462-466. DOI: 10.3938/jkps.68.462
    [14]
    MERIKHI B, MIRJALILI S M, ZOGHI M, et al. Radiation pattern design of photonic crystal LED optimized by using multi-objective grey wolf optimizer[J]. Photonic Network Communication, 2019, 38(1): 167-176. DOI: 10.1007/s11107-019-00843-1
    [15]
    OKAMOTO K, NIKI I, SHVARTSER A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Materials, 2004, 3(9): 601-605. DOI: 10.1038/nmat1198
    [16]
    ABDULLAH N R, TANG C S, MANOLESCU A, et al. Manifestation of the purcell effect in current transport through a dot-cavity-QED system[J]. Nanomaterials, 2019, 9(7): 1023. DOI: 10.3390/nano9071023
    [17]
    PLANKENSTEINERR D, SOMMER C, REITZ M, et al. Enhanced collective purcell effect of coupled quantum emitter systems[J]. Physical Review, 2019, A99(4): 043843. DOI: 10.1103/PhysRevA.99.043843
    [18]
    LIU T L.Research on improving characteristics of LED luminescence with surface plasmon polariton[D].Qinhuangdao: Yanshan University, 2018: 20-30 (in Chinese).
    [19]
    ZHANG H, ZHU J, ZHU Z, et al. Surface-plasmon-enhanced GaN-LED based on amultilayered M-shaped nano-grating[J]. Optics Express, 2013, 21(11): 13492. DOI: 10.1364/OE.21.013492
    [20]
    ZHU J, HAO S. Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating[J]. Optics Communications, 2014, 322(1): 66-72. DOI: 10.1016/j.optcom.2014.02.011
    [21]
    LI Zh Q, WEI W J. Research on parameter optimization of LED based on surface plasmons[J]. Acta Metrologica Sinica, 2020, 41(9): 1070-1076(in Chinese).
    [22]
    JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physics Review, 1972, B6(2): 4370-4379. DOI: 10.1103/PhysRevB.6.4370
    [23]
    DING F, DAI J, CHEN Y, et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 2016, 6(12): 39445. DOI: 10.1038/srep39445
    [24]
    JIANG X W, WU H, YUAN Sh C. Enhancement of graphene three-channel optical absorption based on metal grating[J]. Acta Physica Sinica, 2019, 68(13): 138101(in Chinese). DOI: 10.7498/aps.68.20182173
  • Cited by

    Periodical cited type(7)

    1. 刘宣呈,陈根余,操坤,曹明月,梅枫. 成形砂轮激光修整的多轮廓图像合成检测方法. 激光技术. 2024(03): 395-404 . 本站查看
    2. 何易德,朱斌,姜湖海,刘书信,李黎明,胡绍云. 红外图像多尺度统计和应用先验去模糊模型. 激光技术. 2023(03): 360-365 . 本站查看
    3. 何易德,朱斌,司晨,毛锐. 基于红外视景仿真技术的导向滤波算法. 激光技术. 2021(02): 233-239 . 本站查看
    4. 朱金辉,张宝华,谷宇,李建军,张明. 基于双邻域对比度的红外小目标检测算法. 激光技术. 2021(06): 794-798 . 本站查看
    5. 王宁,周铭,杜庆磊,王冰. 一种红外图像快速目标检测方法. 弹箭与制导学报. 2020(04): 24-28+33 .
    6. 刘晓玲,牛海春,宋海燕,秦富贞. 复杂环境下弱信号中的红外小目标自动检测. 激光杂志. 2020(10): 82-86 .
    7. 王宁,周铭,杜庆磊,王冰. 基于Otsu准则的红外图像快速分割算法. 空军预警学院学报. 2019(02): 88-92 .

    Other cited types(4)

Catalog

    Article views (9) PDF downloads (7) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return