Advanced Search
HU Yurun, WANG Muguang, SUN Chunran, ZHANG Jing, BING Fan, CHEN Desheng. Research on improvement of phase generated carrier demodulation algorithm for fiber optic interferometric sensor[J]. LASER TECHNOLOGY, 2022, 46(2): 213-219. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.011
Citation: HU Yurun, WANG Muguang, SUN Chunran, ZHANG Jing, BING Fan, CHEN Desheng. Research on improvement of phase generated carrier demodulation algorithm for fiber optic interferometric sensor[J]. LASER TECHNOLOGY, 2022, 46(2): 213-219. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.011

Research on improvement of phase generated carrier demodulation algorithm for fiber optic interferometric sensor

More Information
  • Received Date: March 02, 2021
  • Revised Date: March 30, 2021
  • Published Date: March 24, 2022
  • In order to solve the distortion of the demodulated signal caused by the drift of modulation depth in the traditional phase generation carrier demodulation algorithms, the signal demodulation method of differential cross division was adopted. Related theoretical analysis and simulation verification were carried out, and a high-performance phase-generating carrier demodulation scheme that was not limited by the modulation depth was obtained. The results show that the demodulation performance of the improved algorithm is always excellent when the signals under test of different amplitudes and frequencies are used for simulation. When the values of modulation depth are respectively typical values such as 2.63rad and 2.37rad and atypical values such as 1.5rad and 3.0rad, the demodulated signals obtained by improved algorithm has no distortion. At the same time, when the modulation depth changes in the range of 0.5rad~3.5rad, compared with traditional demodulation algorithms, the amplitude of the demodulated signal in the improved algorithm is always consistent with the signal under test and the high-order harmonic components are always very small. This research solves the distortion phenomenon caused by the modulation depth change in traditional demodulation algorithms, and provides a reference for the demodulation scheme of the optical fiber interferometric sensor system.
  • [1]
    LEE B H, KIM Y H, PARK K S, et al. Interferometric fiber optic sensors[J]. Sensors, 2012, 12(3): 2467-2486. DOI: 10.3390/s120302467
    [2]
    LI Y Sh, ZHOU B, LI X Y. Phase modulation and demodulation of interferometric fiber-optic hydrophone using phase generated carrier techniques[J]. Journal of Transducer Technology, 2004, 23(2): 14-17(in Chinese).
    [3]
    CAO J N, LI X Y, ZHANG L K, et al. Dynamic range analysis of Mach-Zehnder fiber optic interferometer using PGC homodyne detection scheme[J]. Journal of Harbin Engineering University, 1998, 19(5): 81-87(in Chinese).
    [4]
    YIN J, LIU T, JIANG J, et al. Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(6): 625-628. DOI: 10.1109/LPT.2015.2503276
    [5]
    ZHANG R, JIANG Sh, YAN Q Zh, et al. All-fiber perimeter alarm system based on Mach-Zehnder interference[J]. Laser Technology, 2013, 37(3): 334-337(in Chinese).
    [6]
    DANDRIDGE A, TVETEN A B, GIALLORENZI T G. Homodyne demodulation scheme for fiber optic sensors using phase generated ca-rrier[J]. IEEE Journal of Quantum Electronics, 1982, 18(10): 1647-1653. DOI: 10.1109/JQE.1982.1071416
    [7]
    WANG Z F, HU Y M, MENG Z, et al. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones[J]. Chinese Optics Letters, 2008, 6(5): 381-383. DOI: 10.3788/COL20080605.0381
    [8]
    NI M, HU Y M, MENG Zh, et al. Dynamic range of fiber optic hydrophone using digitized phase generated carrier[J]. Laser & Opto-electronics Progress, 2005, 42(2): 33-37(in Chinese).
    [9]
    WANG L, LI Y Q, ZHANG L X, et al. Research progress of phase demodulation in ϕ-OTDR system[J]. Laser Technology, 2019, 43(1): 69-74(in Chinese).
    [10]
    CRANCH G A, NASH P J, KIRKENDALL C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30. DOI: 10.1109/JSEN.2003.810102
    [11]
    BO L H, LIAO Y B, ZHANG M, et al. The improvement on PGC demodulation method based on optical fiber interferometer sensors[J]. Acta Photonica Sinica, 2005, 34(9): 1324-1327(in Chin-ese).
    [12]
    MA L, LIU Y, LI Y, et al. Analysis of frequency drift effects in the phase-generated carrier method[J]. Acta Photonica Sinica, 2013, 42(1): 34-37(in Chinese). DOI: 10.3788/gzxb20134201.0034
    [13]
    WANG G Q, XU T W, LI F, et al. PGC demodulation technique with high stability and low harmonic distortion[J]. IEEE Photonics Technology Letters, 2012, 24(23): 2093-2096. DOI: 10.1109/LPT.2012.2220129
    [14]
    HUANG S C, HUANG Y F, HWANG F H. An improved sensitivity normalization technique of PGC demodulation with low minimum phase detection sensitivity using laser modulation to generate carrier signal[J]. Sensors & Actuators, 2013, A191(2): 1-10.
    [15]
    ZHANG S, ZHANG A L, PAN H G, et al. Eliminating light intensity disturbance with reference compensation in interferometers[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1888-1891. DOI: 10.1109/LPT.2015.2444421
    [16]
    HE J, WANG L, LI F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. Journal of Lightwave Technology, 2010, 28(22): 3258-3265.
    [17]
    LI Y, SU X X, LIU Y, et al. A PGC demodulation method based on the fundamental frequency mixing[J]. Journal of Optoelectronics·Laser, 2012, 23(5): 933-938(in Chinese).
    [18]
    ZHANG A L, WANG Y, GONG M J, et al. An improved algorithm of PGC demodulation method based on fundamental frequency mixing[J]. Acta Photonica Sinica, 2014, 43(2): 0206003(in Chin-ese). DOI: 10.3788/gzxb20144302.0206003
    [19]
    SUN W, YU M, CHANG T Y, et al. Research and improvement based in PGC demodulation method[J]. Acta Photonica Sinica, 2018, 47(8): 806004 (in Chinese). DOI: 10.3788/gzxb20184708.0806004
    [20]
    CHEN D S, HUANG X D, WANG H B, et al. PGC modulation based on PZT for fiber interferometric sensor[C]// Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). Shanghai, China: IEEE, 2012: 148-150.
    [21]
    NI M. Investigation of the key technologies of fiber optic hydrophone[D]. Beijing: Chinese Academy of Sciences, 2003: 65-68(in Ch-inese).
  • Cited by

    Periodical cited type(7)

    1. 江覃晴,吕桂贤,赵文彬,王斌,楚鹏浩,赵慧光. 基于DFB激光器的振动传感系统改进PGC解调算法. 半导体光电. 2024(02): 319-326 .
    2. 周朕蕊,张国强,邱宗甲,郭少朋,李群,邵剑,吴鹏,陆云才. 光纤法珀传感器的改进型相位生成载波法解调. 中国光学(中英文). 2024(02): 312-323 .
    3. 蔡冰涛,肖力敏,陈小宝. 基于线性插值的相位生成载波算法动态范围上限提高. 激光与光电子学进展. 2024(17): 151-159 .
    4. 苑龙祥,汪华平,王阳,刘敬之,曲全磊. 隔离开关合闸状态的非接触自动检测方法. 激光技术. 2024(05): 734-738 . 本站查看
    5. 王春梅,张总,王辉. 基于激光干涉的高分辨率精密位移测量研究. 激光杂志. 2023(04): 97-102 .
    6. 王宇,孙德龙,杨佳沛,梁斌,白清,刘昕,靳宝全. 基于多频相位生成载波的光纤振动传感技术研究. 传感技术学报. 2023(03): 367-372 .
    7. 孙抗,韩毓,何梦阳. 基于频分复用φ-OTDR的高频振动检测与解调. 传感器与微系统. 2023(07): 148-151 .

    Other cited types(6)

Catalog

    Article views (12) PDF downloads (9) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return