Citation: | HU Yurun, WANG Muguang, SUN Chunran, ZHANG Jing, BING Fan, CHEN Desheng. Research on improvement of phase generated carrier demodulation algorithm for fiber optic interferometric sensor[J]. LASER TECHNOLOGY, 2022, 46(2): 213-219. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.011 |
[1] |
LEE B H, KIM Y H, PARK K S, et al. Interferometric fiber optic sensors[J]. Sensors, 2012, 12(3): 2467-2486. DOI: 10.3390/s120302467
|
[2] |
LI Y Sh, ZHOU B, LI X Y. Phase modulation and demodulation of interferometric fiber-optic hydrophone using phase generated carrier techniques[J]. Journal of Transducer Technology, 2004, 23(2): 14-17(in Chinese).
|
[3] |
CAO J N, LI X Y, ZHANG L K, et al. Dynamic range analysis of Mach-Zehnder fiber optic interferometer using PGC homodyne detection scheme[J]. Journal of Harbin Engineering University, 1998, 19(5): 81-87(in Chinese).
|
[4] |
YIN J, LIU T, JIANG J, et al. Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2016, 28(6): 625-628. DOI: 10.1109/LPT.2015.2503276
|
[5] |
ZHANG R, JIANG Sh, YAN Q Zh, et al. All-fiber perimeter alarm system based on Mach-Zehnder interference[J]. Laser Technology, 2013, 37(3): 334-337(in Chinese).
|
[6] |
DANDRIDGE A, TVETEN A B, GIALLORENZI T G. Homodyne demodulation scheme for fiber optic sensors using phase generated ca-rrier[J]. IEEE Journal of Quantum Electronics, 1982, 18(10): 1647-1653. DOI: 10.1109/JQE.1982.1071416
|
[7] |
WANG Z F, HU Y M, MENG Z, et al. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones[J]. Chinese Optics Letters, 2008, 6(5): 381-383. DOI: 10.3788/COL20080605.0381
|
[8] |
NI M, HU Y M, MENG Zh, et al. Dynamic range of fiber optic hydrophone using digitized phase generated carrier[J]. Laser & Opto-electronics Progress, 2005, 42(2): 33-37(in Chinese).
|
[9] |
WANG L, LI Y Q, ZHANG L X, et al. Research progress of phase demodulation in ϕ-OTDR system[J]. Laser Technology, 2019, 43(1): 69-74(in Chinese).
|
[10] |
CRANCH G A, NASH P J, KIRKENDALL C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30. DOI: 10.1109/JSEN.2003.810102
|
[11] |
BO L H, LIAO Y B, ZHANG M, et al. The improvement on PGC demodulation method based on optical fiber interferometer sensors[J]. Acta Photonica Sinica, 2005, 34(9): 1324-1327(in Chin-ese).
|
[12] |
MA L, LIU Y, LI Y, et al. Analysis of frequency drift effects in the phase-generated carrier method[J]. Acta Photonica Sinica, 2013, 42(1): 34-37(in Chinese). DOI: 10.3788/gzxb20134201.0034
|
[13] |
WANG G Q, XU T W, LI F, et al. PGC demodulation technique with high stability and low harmonic distortion[J]. IEEE Photonics Technology Letters, 2012, 24(23): 2093-2096. DOI: 10.1109/LPT.2012.2220129
|
[14] |
HUANG S C, HUANG Y F, HWANG F H. An improved sensitivity normalization technique of PGC demodulation with low minimum phase detection sensitivity using laser modulation to generate carrier signal[J]. Sensors & Actuators, 2013, A191(2): 1-10.
|
[15] |
ZHANG S, ZHANG A L, PAN H G, et al. Eliminating light intensity disturbance with reference compensation in interferometers[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1888-1891. DOI: 10.1109/LPT.2015.2444421
|
[16] |
HE J, WANG L, LI F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. Journal of Lightwave Technology, 2010, 28(22): 3258-3265.
|
[17] |
LI Y, SU X X, LIU Y, et al. A PGC demodulation method based on the fundamental frequency mixing[J]. Journal of Optoelectronics·Laser, 2012, 23(5): 933-938(in Chinese).
|
[18] |
ZHANG A L, WANG Y, GONG M J, et al. An improved algorithm of PGC demodulation method based on fundamental frequency mixing[J]. Acta Photonica Sinica, 2014, 43(2): 0206003(in Chin-ese). DOI: 10.3788/gzxb20144302.0206003
|
[19] |
SUN W, YU M, CHANG T Y, et al. Research and improvement based in PGC demodulation method[J]. Acta Photonica Sinica, 2018, 47(8): 806004 (in Chinese). DOI: 10.3788/gzxb20184708.0806004
|
[20] |
CHEN D S, HUANG X D, WANG H B, et al. PGC modulation based on PZT for fiber interferometric sensor[C]// Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). Shanghai, China: IEEE, 2012: 148-150.
|
[21] |
NI M. Investigation of the key technologies of fiber optic hydrophone[D]. Beijing: Chinese Academy of Sciences, 2003: 65-68(in Ch-inese).
|
1. |
江覃晴,吕桂贤,赵文彬,王斌,楚鹏浩,赵慧光. 基于DFB激光器的振动传感系统改进PGC解调算法. 半导体光电. 2024(02): 319-326 .
![]() | |
2. |
周朕蕊,张国强,邱宗甲,郭少朋,李群,邵剑,吴鹏,陆云才. 光纤法珀传感器的改进型相位生成载波法解调. 中国光学(中英文). 2024(02): 312-323 .
![]() | |
3. |
蔡冰涛,肖力敏,陈小宝. 基于线性插值的相位生成载波算法动态范围上限提高. 激光与光电子学进展. 2024(17): 151-159 .
![]() | |
4. |
苑龙祥,汪华平,王阳,刘敬之,曲全磊. 隔离开关合闸状态的非接触自动检测方法. 激光技术. 2024(05): 734-738 .
![]() | |
5. |
王春梅,张总,王辉. 基于激光干涉的高分辨率精密位移测量研究. 激光杂志. 2023(04): 97-102 .
![]() | |
6. |
王宇,孙德龙,杨佳沛,梁斌,白清,刘昕,靳宝全. 基于多频相位生成载波的光纤振动传感技术研究. 传感技术学报. 2023(03): 367-372 .
![]() | |
7. |
孙抗,韩毓,何梦阳. 基于频分复用φ-OTDR的高频振动检测与解调. 传感器与微系统. 2023(07): 148-151 .
![]() |