Advanced Search
LI Cheng, JING Bo, LIAO Jinyu, CHEN Yujie, SONG Riyao, ZHANG Tianle, SONG Haizhi, ZHOU Qiang. Advances of rare earth ions doped solid-state quantum memory at telecom band[J]. LASER TECHNOLOGY, 2022, 46(1): 45-57. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.003
Citation: LI Cheng, JING Bo, LIAO Jinyu, CHEN Yujie, SONG Riyao, ZHANG Tianle, SONG Haizhi, ZHOU Qiang. Advances of rare earth ions doped solid-state quantum memory at telecom band[J]. LASER TECHNOLOGY, 2022, 46(1): 45-57. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.003

Advances of rare earth ions doped solid-state quantum memory at telecom band

More Information
  • Received Date: August 15, 2021
  • Revised Date: August 30, 2021
  • Published Date: January 24, 2022
  • Quantum internet is an important basis for realizing multi-party quantum communication, distributed quantum computing, and other quantum information technologies. Quantum memory, as a significant part for realizing Internet, plays a pivotal role in the development and application of quantum information technology. Nowadays, the global optical fiber network has become a powerful carrier of information transmission, and quantum memory in communication band is highly valued because it is easy to be embedded in the current optical fiber network. Focus on telecom band optical quantum memory with rare earth ions doped solid-state system, the basic principle of rare earth ions doped solid-state quantum memory was firstly introduced, including rare earth doped material properties and memory protocol. the current state of the art was then introduced. Finally, a brief analysis on its future development trend was given, and the prospect for the construction of quantum Internet was made.
  • [1]
    ZHONG H S, WANG H, DENG Y HAO, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463. DOI: 10.1126/science.abe8770
    [2]
    BRIEGEL H J, DVR W, CIRAC J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932-5935. DOI: 10.1103/PhysRevLett.81.5932
    [3]
    SPECHT H P, NÖLLEKE C, REISERER A, et al. A single-atom quantum memory[J]. Nature, 2011, 473(7346): 190-193. DOI: 10.1038/nature09997
    [4]
    BLATT R, WINELAND D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015. DOI: 10.1038/nature07125
    [5]
    GREZES C, JULSGAARD B, KUBO Y, et al. Multimode storage and retrieval of microwave fields in a spin ensemble[J]. Physical Review, 2014, X4(2): 021049. http://hal.upmc.fr/hal-01340124/document
    [6]
    BHASKAR M K, RIEDINGER R, MACHIELSE B, et al. Experimental demonstration of memory enhanced quantum communication[J]. Nature, 2020, 580(7801): 60-64. DOI: 10.1038/s41586-020-2103-5
    [7]
    CHANELIèRE T, MATSUKEVICH D N, JENKINS S D, et al. Sto-rage and retrieval of single photons transmitted between remote quantum memories[J]. Nature, 2005, 438(7069): 833-836. DOI: 10.1038/nature04315
    [8]
    CHOU C W, de RIEDMATTEN H, FELINTO D, et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles[J]. Nature, 2005, 438(7069): 828-832. DOI: 10.1038/nature04353
    [9]
    RADNAEV A G, DUDIN Y O, ZHAO R, et al. A quantum memory with telecom-wavelength conversion[J]. Nature Physics, 2010, 6(11): 894-899. DOI: 10.1038/nphys1773
    [10]
    BAO X H, REINGRUBER A, DIETRICH P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nature Physics, 2012, 8(7): 517-521. DOI: 10.1038/nphys2324
    [11]
    BUSTARD P J, LAUSTEN R, ENGLAND D G, et al. Toward quantum processing in molecules: A THz-bandwidth coherent memory for light[J]. Physical Review Letters, 2013, 111(8): 083901. DOI: 10.1103/PhysRevLett.111.083901
    [12]
    THIEL C W, BÖTTGER T, CONE R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 2011, 131(3): 353-361. DOI: 10.1016/j.jlumin.2010.12.015
    [13]
    LIU G, JACQUIER B. Spectroscopic properties of rare earths in optical materials[M]. Beijing: Tsinghua University Press and Springer-Verlag Berlin Heidelberg, 2005: 23-59.
    [14]
    ZHONG M, HEDGES M P, AHLEFELDT R L, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time[J]. Nature, 2015, 517(7533): 177-180. DOI: 10.1038/nature14025
    [15]
    STONEHAM A M. Shapes of inhomogeneously broadened resonance line in solids[J]. Reviews of Modern physics, 1969, 41(1): 82-108. DOI: 10.1103/RevModPhys.41.82
    [16]
    ZHANG X Y, YUAN Ch Zh, WEI Sh H, et al. Rare earth doped solid state quantum memory[J]. Low Temperature Physical Letters, 2019, 41(5): 315-334 (in Chinese).
    [17]
    LONGDELL J J, FRAVAL E, SELLARS M J, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid[J]. Physical Review Letters, 2005, 95(6): 063601. DOI: 10.1103/PhysRevLett.95.063601
    [18]
    NILSSON M, KRÖLL S. Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles[J]. Optics Communications, 2005, 247(4/6): 393-403. http://www.sciencedirect.com/science/article/pii/S0030401804012325
    [19]
    TITTEL W, AFZELIUS M, CHANELIéRE T, et al. Photon-echo quantum memory in solid state systems[J]. Laser & Photonics Reviews, 2009, 4(2): 244-267. http://disser.spbu.ru/disser/info_oponenta_{disser___id}_/Sved_opp_Moiseev1.pdf
    [20]
    SANGOUARD N, SIMON C, AFZELIUS M, et al. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening[J]. Physical Review, 2007, A75(3): 032327. http://www.unige.ch/gap/quantum/_media/publications:bib:qmemosangouard.pdf
    [21]
    SAGLAMYUREK E. Broadband waveguide quantum memory for quantum communication[D]. Calgary, Canada: University of Calgary, 2013: 35.
    [22]
    AFZELIUS M, SIMON C, de RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review, 2009, A79(5): 052329. http://cms.unige.ch/gap/optics/wiki/_media/publications:bib:afc.pdf
    [23]
    HEDGES M P, LONGDELL J J, LI Y, et al. Efficient quantum memory for light[J]. Nature, 2010, 465(7301): 1052-1056. DOI: 10.1038/nature09081
    [24]
    RUGGIERO J, LE GOUËT J L, SIMON C, et al. Why the two-pulse photon echo is not a good quantum memory protocol[J]. Physical Review, 2009, A79(5): 053851. http://www.onacademic.com/detail/journal_1000037059941010_8ef0.html
    [25]
    SANGOUARD N, SIMON C, MINÁŘ J, et al. Impossibility of faithfully storing single photons with the three-pulse photon echo[J]. Physical Review, 2010, A81(6): 062333. http://www.arxiv.org/pdf/1002.5022.pdf
    [26]
    LEDINGHAM P M, NAYLOR W R, LONGDELL J J, et al. Nonclassical photon streams using rephased amplified spontaneous emission[J]. Physical Review, 2010, A81(1): 012301. http://www.researchgate.net/profile/Patrick_Ledingham/publication/45858520_Non-classical_photon_streams_using_rephased_amplified_spontaneous_emission/links/00b7d52ebaef6e523e000000
    [27]
    DAMON V, BONAROTA M, LOUCHET-CHAUVET A, et al. Revival of silenced echo and quantum memory for light[J]. New Journal of Physics, 2011, 13(9): 093031. DOI: 10.1088/1367-2630/13/9/093031
    [28]
    MEIXNER A J, JEFFERSON C M, MAcFARLANE R M. Measurement of the Stark effect with subhomogeneous linewidth resolution in Eu3+∶YAlO3 with the use of photon-echo modulation[J]. Physical Review, 1992, B46(10): 5912-5916. http://www.ncbi.nlm.nih.gov/pubmed/10002273
    [29]
    CHANELIÈRE T, RUGGIERO J, GOUËT J L L, et al. Tm3+∶Y2O3 investigated for a quantum light storage application[J]. Physical Review, 2008, B77(24): 245127.
    [30]
    MOISEEV S A, KRÖLL S. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition[J]. Physical Review Letters, 2001, 87(17): 173601. DOI: 10.1103/PhysRevLett.87.173601
    [31]
    KRAUS B, TITTEL W, GISIN N, et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening[J]. Physical Review, 2006, A73(2): 020302. http://core.ac.uk/download/pdf/2660191.pdf
    [32]
    ALEXANDER A L, LONGDELL J J, SELLARS M J, et al. Photon echoes produced by switching electric fields[J]. Physical Review Letters, 2006, 96(4): 043602. DOI: 10.1103/PhysRevLett.96.043602
    [33]
    LAURITZEN B, MINÁŘ J, de RIEDMATTEN H, et al. Telecommunication-wavelength solid-state memory at the single photon level[J]. Physical Review Letters, 2010, 104(8): 080502. DOI: 10.1103/PhysRevLett.104.080502
    [34]
    LAURITZEN B, HASTINGS-SIMON S R, DE RIEDMATTEN H, et al. State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing[J]. Physical Review, 2008, A78(4): 043402. http://www.gap-optique.unige.ch/wiki/_media/publications:bib:physreva_78_043402.pdf
    [35]
    LAURITZEN B, MINÁŘ J, DE RIEDMATTEN, et al. Approaches for a quantum memory at telecommunication wavelengths[J]. Physical Review, 2011, A83(1): 012318. http://www.unige.ch/gap/quantum/_media/publications:bib:lauritzen2011pra.pdf
    [36]
    MARING N, KUTLUER K, COHEN J, et al. Storage of up-converted telecom photons in a doped crystal[J]. New Journal of Physics, 2014, 16(11): 113021. DOI: 10.1088/1367-2630/16/11/113021
    [37]
    SAGLAMYUREK E, JIN J, VERMA V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre[J]. Nature Photonics, 2015, 9(2): 83-87. DOI: 10.1038/nphoton.2014.311
    [38]
    JIN J, SAGLAMYUREK E, PUIGIBERT M, et al. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits[J]. Physical Review Letters, 2015, 115(14): 140501. DOI: 10.1103/PhysRevLett.115.140501
    [39]
    SAGLAMYUREK E, PUIGIBERT M L G, ZHOU Q, et al. A multiplexed light-matter interface for fibre-based quantum networks[J]. Nature Communications, 2016, 7: 11202. DOI: 10.1038/ncomms11202
    [40]
    ASKARANI M F, PUIGIBERT M L G, LUTZ T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056. DOI: 10.1103/PhysRevApplied.11.054056
    [41]
    CRAICIU I, LEI M, ROCHMAN J, et al. Nanophotonic quantum storage at telecommunication wavelength[J]. Physical Review Applied, 2019, 12(2): 024062. DOI: 10.1103/PhysRevApplied.12.024062
    [42]
    PUIGIBERT M L G, ASKARANI M F, DAVIDSON J H, et al. Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons[J]. Physical Review Research, 2020, 2(1): 013039. DOI: 10.1103/PhysRevResearch.2.013039
    [43]
    CRAICIU I, LEI M, ROCHMAN J, et al. Multifunctional on-chip storage at telecommunication wavelength for quantum networks[J]. Optica, 2021, 8(1): 114-121. DOI: 10.1364/OPTICA.412211
    [44]
    WEI Sh H, JING B, ZHANG X Y, et al. Multiplexed and broadband quantum storage of single-photons at telecom C-band[C]//CLEO-QELS Fundamental Science. Washington DC, USA: Optical Society of America, 2021: FM4M. 2.
    [45]
    XI Q, WEI Sh H, YUAN C Z, et al. Experimental observation of coherent interaction between laser and erbium ions ensemble doped in fiber at sub 10mK[J]. Science China Information Sciences, 2020, 63(8): 180505. DOI: 10.1007/s11432-020-2954-5
    [46]
    DAJCZGEWAND J, LE GOUËT J L, LOUCHET-CHAUVET A, et al. Large efficiency at telecom wavelength for optical quantum memories[J]. Optics Letters, 2014, 39(9): 2711-2714. DOI: 10.1364/OL.39.002711
    [47]
    MAcFARLANE R M, HARRIS T L, SAN Y, et al. Measurement of photon echoes at 1.5μm in Er3+∶Y2SiO5 using a diode laser and amplifier[C]//Quantum Electronics and Laser Science Conference. New York, USA: IEEE, 1997: QTuE24.
    [48]
    BÖTTGER T, THIEL C W, CONE R L, et al. Effects of magnetic field orientation on optical decoherence in Er3+∶Y2SiO5[J]. Physical Review, 2009, B79(11): 115104. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000009000003000103000001&idtype=cvips&gifs=Yes
    [49]
    BÖTTGER T, SUN Y, THIEL C W, et al. Spectroscopy and dynamics of Er3+∶Y2SiO5 at 1.5μm[J]. Physical Review, 2006, B74(7): 075107. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112079447.html
    [50]
    SUN Y, BÖTTGER T, THIEL C W, et al. Magnetic g tensors for the 4I15/2 and 4I13/2 states of Er3+∶Y2SiO5[J]. Physical Review, 2008, B77(8): 085124. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000077000008085124000001&idtype=cvips&gifs=Yes
    [51]
    BÖTTGER T, THIEL C W, SUN Y, et al. Optical decoherence and spectral diffusion at 1.5μm in Er3+∶Y2SiO5 versus magnetic field, temperature, and Er3+ concentration[J]. Physical Review, 2006, B73(7): 075101. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000073000007075101000001&idtype=cvips&gifs=Yes
    [52]
    DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. DOI: 10.1038/35106500
    [53]
    WALLUCKS A, MARINKOVIĆ I, HENSEN B, et al. A quantum memory at telecom wavelengths[J]. Nature Physics, 2020, 16(7): 772-777. DOI: 10.1038/s41567-020-0891-z
    [54]
    MANENTI R, KOCKUM A F, PATTERSON A, et al. Circuit quantum acoustodynamics with surface acoustic waves[J]. Nature Communications, 2017, 8(1): 975. DOI: 10.1038/s41467-017-01063-9
    [55]
    BIENFAIT A, SATZINGER K J, ZHONG Y P, et al. Phonon-mediated quantum state transfer and remote qubit entanglement[J]. Science, 2019, 364: 368-371. DOI: 10.1126/science.aaw8415
    [56]
    SIMON C. Towards a global quantum network[J]. Nature Photonics, 2017, 11(11): 678-680. DOI: 10.1038/s41566-017-0032-0
    [57]
    YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501. DOI: 10.1103/PhysRevLett.117.190501
    [58]
    URSIN R, JENNEWEIN T, KOFLER J, et al. Space-quest, experiments with quantum entanglement in space[J]. Europhysics News, 2009, 40(3): 26-29. DOI: 10.1051/epn/2009503
  • Cited by

    Periodical cited type(2)

    1. 马芳, 李辉, 谭荣清, 石佳俊. 同步调制调Q射频波导CO_2激光器研究. 激光技术. 2019(01): 75-78 . 本站查看
    2. 薛冬, 刘珊珊, 高珊, 张裕仕, 宗明吉, 陈淑瑜. 矩形金属波导传输模式研究. 枣庄学院学报. 2017(05): 18-25 .

    Other cited types(0)

Catalog

    Article views (11) PDF downloads (24) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return