Citation: | LI Cheng, JING Bo, LIAO Jinyu, CHEN Yujie, SONG Riyao, ZHANG Tianle, SONG Haizhi, ZHOU Qiang. Advances of rare earth ions doped solid-state quantum memory at telecom band[J]. LASER TECHNOLOGY, 2022, 46(1): 45-57. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.003 |
[1] |
ZHONG H S, WANG H, DENG Y HAO, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463. DOI: 10.1126/science.abe8770
|
[2] |
BRIEGEL H J, DVR W, CIRAC J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932-5935. DOI: 10.1103/PhysRevLett.81.5932
|
[3] |
SPECHT H P, NÖLLEKE C, REISERER A, et al. A single-atom quantum memory[J]. Nature, 2011, 473(7346): 190-193. DOI: 10.1038/nature09997
|
[4] |
BLATT R, WINELAND D. Entangled states of trapped atomic ions[J]. Nature, 2008, 453(7198): 1008-1015. DOI: 10.1038/nature07125
|
[5] |
GREZES C, JULSGAARD B, KUBO Y, et al. Multimode storage and retrieval of microwave fields in a spin ensemble[J]. Physical Review, 2014, X4(2): 021049. http://hal.upmc.fr/hal-01340124/document
|
[6] |
BHASKAR M K, RIEDINGER R, MACHIELSE B, et al. Experimental demonstration of memory enhanced quantum communication[J]. Nature, 2020, 580(7801): 60-64. DOI: 10.1038/s41586-020-2103-5
|
[7] |
CHANELIèRE T, MATSUKEVICH D N, JENKINS S D, et al. Sto-rage and retrieval of single photons transmitted between remote quantum memories[J]. Nature, 2005, 438(7069): 833-836. DOI: 10.1038/nature04315
|
[8] |
CHOU C W, de RIEDMATTEN H, FELINTO D, et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles[J]. Nature, 2005, 438(7069): 828-832. DOI: 10.1038/nature04353
|
[9] |
RADNAEV A G, DUDIN Y O, ZHAO R, et al. A quantum memory with telecom-wavelength conversion[J]. Nature Physics, 2010, 6(11): 894-899. DOI: 10.1038/nphys1773
|
[10] |
BAO X H, REINGRUBER A, DIETRICH P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nature Physics, 2012, 8(7): 517-521. DOI: 10.1038/nphys2324
|
[11] |
BUSTARD P J, LAUSTEN R, ENGLAND D G, et al. Toward quantum processing in molecules: A THz-bandwidth coherent memory for light[J]. Physical Review Letters, 2013, 111(8): 083901. DOI: 10.1103/PhysRevLett.111.083901
|
[12] |
THIEL C W, BÖTTGER T, CONE R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 2011, 131(3): 353-361. DOI: 10.1016/j.jlumin.2010.12.015
|
[13] |
LIU G, JACQUIER B. Spectroscopic properties of rare earths in optical materials[M]. Beijing: Tsinghua University Press and Springer-Verlag Berlin Heidelberg, 2005: 23-59.
|
[14] |
ZHONG M, HEDGES M P, AHLEFELDT R L, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time[J]. Nature, 2015, 517(7533): 177-180. DOI: 10.1038/nature14025
|
[15] |
STONEHAM A M. Shapes of inhomogeneously broadened resonance line in solids[J]. Reviews of Modern physics, 1969, 41(1): 82-108. DOI: 10.1103/RevModPhys.41.82
|
[16] |
ZHANG X Y, YUAN Ch Zh, WEI Sh H, et al. Rare earth doped solid state quantum memory[J]. Low Temperature Physical Letters, 2019, 41(5): 315-334 (in Chinese).
|
[17] |
LONGDELL J J, FRAVAL E, SELLARS M J, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid[J]. Physical Review Letters, 2005, 95(6): 063601. DOI: 10.1103/PhysRevLett.95.063601
|
[18] |
NILSSON M, KRÖLL S. Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles[J]. Optics Communications, 2005, 247(4/6): 393-403. http://www.sciencedirect.com/science/article/pii/S0030401804012325
|
[19] |
TITTEL W, AFZELIUS M, CHANELIéRE T, et al. Photon-echo quantum memory in solid state systems[J]. Laser & Photonics Reviews, 2009, 4(2): 244-267. http://disser.spbu.ru/disser/info_oponenta_{disser___id}_/Sved_opp_Moiseev1.pdf
|
[20] |
SANGOUARD N, SIMON C, AFZELIUS M, et al. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening[J]. Physical Review, 2007, A75(3): 032327. http://www.unige.ch/gap/quantum/_media/publications:bib:qmemosangouard.pdf
|
[21] |
SAGLAMYUREK E. Broadband waveguide quantum memory for quantum communication[D]. Calgary, Canada: University of Calgary, 2013: 35.
|
[22] |
AFZELIUS M, SIMON C, de RIEDMATTEN H, et al. Multimode quantum memory based on atomic frequency combs[J]. Physical Review, 2009, A79(5): 052329. http://cms.unige.ch/gap/optics/wiki/_media/publications:bib:afc.pdf
|
[23] |
HEDGES M P, LONGDELL J J, LI Y, et al. Efficient quantum memory for light[J]. Nature, 2010, 465(7301): 1052-1056. DOI: 10.1038/nature09081
|
[24] |
RUGGIERO J, LE GOUËT J L, SIMON C, et al. Why the two-pulse photon echo is not a good quantum memory protocol[J]. Physical Review, 2009, A79(5): 053851. http://www.onacademic.com/detail/journal_1000037059941010_8ef0.html
|
[25] |
SANGOUARD N, SIMON C, MINÁŘ J, et al. Impossibility of faithfully storing single photons with the three-pulse photon echo[J]. Physical Review, 2010, A81(6): 062333. http://www.arxiv.org/pdf/1002.5022.pdf
|
[26] |
LEDINGHAM P M, NAYLOR W R, LONGDELL J J, et al. Nonclassical photon streams using rephased amplified spontaneous emission[J]. Physical Review, 2010, A81(1): 012301. http://www.researchgate.net/profile/Patrick_Ledingham/publication/45858520_Non-classical_photon_streams_using_rephased_amplified_spontaneous_emission/links/00b7d52ebaef6e523e000000
|
[27] |
DAMON V, BONAROTA M, LOUCHET-CHAUVET A, et al. Revival of silenced echo and quantum memory for light[J]. New Journal of Physics, 2011, 13(9): 093031. DOI: 10.1088/1367-2630/13/9/093031
|
[28] |
MEIXNER A J, JEFFERSON C M, MAcFARLANE R M. Measurement of the Stark effect with subhomogeneous linewidth resolution in Eu3+∶YAlO3 with the use of photon-echo modulation[J]. Physical Review, 1992, B46(10): 5912-5916. http://www.ncbi.nlm.nih.gov/pubmed/10002273
|
[29] |
CHANELIÈRE T, RUGGIERO J, GOUËT J L L, et al. Tm3+∶Y2O3 investigated for a quantum light storage application[J]. Physical Review, 2008, B77(24): 245127.
|
[30] |
MOISEEV S A, KRÖLL S. Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a doppler-broadened transition[J]. Physical Review Letters, 2001, 87(17): 173601. DOI: 10.1103/PhysRevLett.87.173601
|
[31] |
KRAUS B, TITTEL W, GISIN N, et al. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening[J]. Physical Review, 2006, A73(2): 020302. http://core.ac.uk/download/pdf/2660191.pdf
|
[32] |
ALEXANDER A L, LONGDELL J J, SELLARS M J, et al. Photon echoes produced by switching electric fields[J]. Physical Review Letters, 2006, 96(4): 043602. DOI: 10.1103/PhysRevLett.96.043602
|
[33] |
LAURITZEN B, MINÁŘ J, de RIEDMATTEN H, et al. Telecommunication-wavelength solid-state memory at the single photon level[J]. Physical Review Letters, 2010, 104(8): 080502. DOI: 10.1103/PhysRevLett.104.080502
|
[34] |
LAURITZEN B, HASTINGS-SIMON S R, DE RIEDMATTEN H, et al. State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing[J]. Physical Review, 2008, A78(4): 043402. http://www.gap-optique.unige.ch/wiki/_media/publications:bib:physreva_78_043402.pdf
|
[35] |
LAURITZEN B, MINÁŘ J, DE RIEDMATTEN, et al. Approaches for a quantum memory at telecommunication wavelengths[J]. Physical Review, 2011, A83(1): 012318. http://www.unige.ch/gap/quantum/_media/publications:bib:lauritzen2011pra.pdf
|
[36] |
MARING N, KUTLUER K, COHEN J, et al. Storage of up-converted telecom photons in a doped crystal[J]. New Journal of Physics, 2014, 16(11): 113021. DOI: 10.1088/1367-2630/16/11/113021
|
[37] |
SAGLAMYUREK E, JIN J, VERMA V B, et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre[J]. Nature Photonics, 2015, 9(2): 83-87. DOI: 10.1038/nphoton.2014.311
|
[38] |
JIN J, SAGLAMYUREK E, PUIGIBERT M, et al. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits[J]. Physical Review Letters, 2015, 115(14): 140501. DOI: 10.1103/PhysRevLett.115.140501
|
[39] |
SAGLAMYUREK E, PUIGIBERT M L G, ZHOU Q, et al. A multiplexed light-matter interface for fibre-based quantum networks[J]. Nature Communications, 2016, 7: 11202. DOI: 10.1038/ncomms11202
|
[40] |
ASKARANI M F, PUIGIBERT M L G, LUTZ T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056. DOI: 10.1103/PhysRevApplied.11.054056
|
[41] |
CRAICIU I, LEI M, ROCHMAN J, et al. Nanophotonic quantum storage at telecommunication wavelength[J]. Physical Review Applied, 2019, 12(2): 024062. DOI: 10.1103/PhysRevApplied.12.024062
|
[42] |
PUIGIBERT M L G, ASKARANI M F, DAVIDSON J H, et al. Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons[J]. Physical Review Research, 2020, 2(1): 013039. DOI: 10.1103/PhysRevResearch.2.013039
|
[43] |
CRAICIU I, LEI M, ROCHMAN J, et al. Multifunctional on-chip storage at telecommunication wavelength for quantum networks[J]. Optica, 2021, 8(1): 114-121. DOI: 10.1364/OPTICA.412211
|
[44] |
WEI Sh H, JING B, ZHANG X Y, et al. Multiplexed and broadband quantum storage of single-photons at telecom C-band[C]//CLEO-QELS Fundamental Science. Washington DC, USA: Optical Society of America, 2021: FM4M. 2.
|
[45] |
XI Q, WEI Sh H, YUAN C Z, et al. Experimental observation of coherent interaction between laser and erbium ions ensemble doped in fiber at sub 10mK[J]. Science China Information Sciences, 2020, 63(8): 180505. DOI: 10.1007/s11432-020-2954-5
|
[46] |
DAJCZGEWAND J, LE GOUËT J L, LOUCHET-CHAUVET A, et al. Large efficiency at telecom wavelength for optical quantum memories[J]. Optics Letters, 2014, 39(9): 2711-2714. DOI: 10.1364/OL.39.002711
|
[47] |
MAcFARLANE R M, HARRIS T L, SAN Y, et al. Measurement of photon echoes at 1.5μm in Er3+∶Y2SiO5 using a diode laser and amplifier[C]//Quantum Electronics and Laser Science Conference. New York, USA: IEEE, 1997: QTuE24.
|
[48] |
BÖTTGER T, THIEL C W, CONE R L, et al. Effects of magnetic field orientation on optical decoherence in Er3+∶Y2SiO5[J]. Physical Review, 2009, B79(11): 115104. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000009000003000103000001&idtype=cvips&gifs=Yes
|
[49] |
BÖTTGER T, SUN Y, THIEL C W, et al. Spectroscopy and dynamics of Er3+∶Y2SiO5 at 1.5μm[J]. Physical Review, 2006, B74(7): 075107. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112079447.html
|
[50] |
SUN Y, BÖTTGER T, THIEL C W, et al. Magnetic g tensors for the 4I15/2 and 4I13/2 states of Er3+∶Y2SiO5[J]. Physical Review, 2008, B77(8): 085124. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000077000008085124000001&idtype=cvips&gifs=Yes
|
[51] |
BÖTTGER T, THIEL C W, SUN Y, et al. Optical decoherence and spectral diffusion at 1.5μm in Er3+∶Y2SiO5 versus magnetic field, temperature, and Er3+ concentration[J]. Physical Review, 2006, B73(7): 075101. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000073000007075101000001&idtype=cvips&gifs=Yes
|
[52] |
DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. DOI: 10.1038/35106500
|
[53] |
WALLUCKS A, MARINKOVIĆ I, HENSEN B, et al. A quantum memory at telecom wavelengths[J]. Nature Physics, 2020, 16(7): 772-777. DOI: 10.1038/s41567-020-0891-z
|
[54] |
MANENTI R, KOCKUM A F, PATTERSON A, et al. Circuit quantum acoustodynamics with surface acoustic waves[J]. Nature Communications, 2017, 8(1): 975. DOI: 10.1038/s41467-017-01063-9
|
[55] |
BIENFAIT A, SATZINGER K J, ZHONG Y P, et al. Phonon-mediated quantum state transfer and remote qubit entanglement[J]. Science, 2019, 364: 368-371. DOI: 10.1126/science.aaw8415
|
[56] |
SIMON C. Towards a global quantum network[J]. Nature Photonics, 2017, 11(11): 678-680. DOI: 10.1038/s41566-017-0032-0
|
[57] |
YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501. DOI: 10.1103/PhysRevLett.117.190501
|
[58] |
URSIN R, JENNEWEIN T, KOFLER J, et al. Space-quest, experiments with quantum entanglement in space[J]. Europhysics News, 2009, 40(3): 26-29. DOI: 10.1051/epn/2009503
|
1. |
马芳, 李辉, 谭荣清, 石佳俊. 同步调制调Q射频波导CO_2激光器研究. 激光技术. 2019(01): 75-78 .
![]() | |
2. |
薛冬, 刘珊珊, 高珊, 张裕仕, 宗明吉, 陈淑瑜. 矩形金属波导传输模式研究. 枣庄学院学报. 2017(05): 18-25 .
![]() |