Citation: | DUAN Chenghong, WENG Zhiwei, LUO Xiangpeng, CHI Hanlin. Study on fatigue crack growth of laser melting deposited high alloy steel[J]. LASER TECHNOLOGY, 2021, 45(6): 691-696. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.003 |
[1] |
LU B H, LI D Ch, TIAN X Y. Development trends in additive manufacturing and 3D printing[J]. Engineering, 2015, 1(1): 85-89. DOI: 10.15302/J-ENG-2015012
|
[2] |
GU D D, MA Ch L, XIA M J, et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing[J]. Engineering, 2017, 3(5): 675-684. DOI: 10.1016/J.ENG.2017.05.011
|
[3] |
WANG H M. Materials' fundamental issues of laser additive manufacturing for high-preformance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201410002.htm
|
[4] |
TANG H B, WU Y, ZHNAG Sh Q, et al. Research status and deve-lopment trend of high performance large metallic components by laser additive manufacturing technique[J]. Journal of Net Shape Forming Engineering, 2019, 11(4): 58-63(in Chinese).
|
[5] |
CHEN F, YU J H, GUPTA N. Obfuscation of embedded codes in a-dditive manufactured components for product authentication[J]. Advanced Engineering Materials, 2019, 21(8): 1900146. DOI: 10.1002/adem.201900146
|
[6] |
ZHANG W Y, TONG M M, HARRISON N M. Resolution, energy and time dependency on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2019, 28: 610-620. DOI: 10.1016/j.addma.2019.05.002
|
[7] |
GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chin-ese Journal of Lasers, 2020, 47(5): 0500002(in Chinese). DOI: 10.3788/CJL202047.0500002
|
[8] |
SHAMSAEI N, YADOLLAHIA A, BIANL, et al. An overview of direct laser deposition for additive manufacturing; Part Ⅱ: Mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8: 12-35. DOI: 10.1016/j.addma.2015.07.002
|
[9] |
TANG Sh J, LI D Sh, QIN Q H, et al. Microstructure and mechanical properties of 80Ni20Cr alloy manufactured by laser 3D printing technology[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(8): 1572-1579(in Chinese). http://www.researchgate.net/publication/321705369_Microstructure_and_mechanical_properties_of_80Ni20Cr_alloy_manufactured_by_laser_3D_printing_technology
|
[10] |
XU H Y, LI T, LI H B, et al. Study on quality prediction and path selection of 316L laser cladding[J]. Laser Technology, 2018, 42(1): 53-59(in Chinese). http://www.jgjs.net.cn/EN/Y2018/V42/I1/53
|
[11] |
PEGUES J W, SHAO S, SHAMSAEI N, et al. Fatigue of additive manufactured Ti-6Al-4V, Part Ⅰ: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects[J]. International Journal of Fatigue, 2020, 132: 105358. DOI: 10.1016/j.ijfatigue.2019.105358
|
[12] |
PEGUES J W, ROACH M D, SHAMSAEI N. Effects of postprocess thermal treatments on static and cyclic deformation behavior of additively manufactured austenitic stainless steel[J]. Journal of Metals, 2020, 72(3): 1355-1365. DOI: 10.1007/s11837-019-03983-x
|
[13] |
CHOI Y R, SUN S D, LIU Q C, et al. Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. International Journal of Fatigue, 2020, 130: 105236. DOI: 10.1016/j.ijfatigue.2019.105236
|
[14] |
ZHAN Zh X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition[J]. International Journal of Fatigue, 2019, 121: 20-29. DOI: 10.1016/j.ijfatigue.2018.12.001
|
[15] |
LU S S, BAO R, WANG K, et al. Fatigue crack growth behaviour in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Materials Science & Engineering, 2017, A690: 378-386. http://smartsearch.nstl.gov.cn/paper_detail.html?id=6a45a37a92faeaa846be45a38dfa3166
|
[16] |
NIKFAM M R, ZEINODDINI M, AGHEBATI F, et al. Experimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-joints[J]. International Journal of Mechanical Sciences, 2019, 153/154: 178-193. DOI: 10.1016/j.ijmecsci.2019.01.040
|
[17] |
FU Y, LIAO Y S, LU D P, et al. HCF propagation with unilateral initial crack in 304 stainless steel piece by XFEM[J]. Iron and Steel, 2018, 53(9): 63-68(in Chinese). http://www.researchgate.net/publication/330313143_HCF_propagation_with_unilateral_initial_crack_in_304_stainless_steel_piece_by_XFEM
|
[18] |
JIE Zh Y, WANG W J, CHNE Ch, et al. Local approaches and XFEM used to estimate life of CFRP repaired cracked welded joints under fatigue loading[J/OL]. (2020-08-01)[2020-10-30]. https://doi.org/10.1016/j.compstruct.2020.113251.
|
[19] |
HAN X X. Simulation of cracks propagation and fatigue of diesel engine camshaft by laser melting deposition. Beijing: Beijing University of Chemical Technology, 2019: 25-27(in Chinese).
|
[20] |
WEI Q Sh, WANG X, ZHOU H, et al. Research on propagation of fatigue cracking in aluminum alloy transoms for high speed multiple units[J]. Rolling Stock, 2019, 57(4): 1-4(in Chinese).
|
[21] |
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921, 221: 163-198. http://www.researchgate.net/publication/285379778_The_phenomena_of_rupture_and_flows_in_solids
|
[22] |
HUSSAIN M, PU S, UNDERWOOD J. Strain energy release rate for a crack under combined mode Ⅰ and mode Ⅱ[M]. West Conshohocken, USA: Defense Technical Information Center, 1973: 1-78.
|
1. |
李静,王雅清,陆亚婷,周杰,倪晓昌. 皮秒激光在微结构制备中的应用. 轻工科技. 2024(02): 91-93 .
![]() | |
2. |
乔健,吴振铎,彭信翰,冉雨宣,杨景卫. Micro-LED芯片激光去除机理及工艺参数优化. 光学精密工程. 2024(09): 1360-1370 .
![]() |