Advanced Search
ZHANG Qi, SHEN Lei, HE Bo. Application of femtosecond laser in metal micromachining[J]. LASER TECHNOLOGY, 2021, 45(4): 429-435. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.004
Citation: ZHANG Qi, SHEN Lei, HE Bo. Application of femtosecond laser in metal micromachining[J]. LASER TECHNOLOGY, 2021, 45(4): 429-435. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.004

Application of femtosecond laser in metal micromachining

More Information
  • Received Date: August 25, 2020
  • Revised Date: October 22, 2020
  • Published Date: July 24, 2021
  • As a new type of subtractive processing technology, femtosecond laser has unique advantages in material micromachining. The mechanism of femtosecond laser processing was introduced, and the factors that influence the femtosecond laser processing efficiency and processing quality were analysed. The prediction method of femtosecond laser processing parameters and surface quality was expounded. The combined application of the femtosecond laser and additive manufacturing was thenprospected. There are many factors affecting the efficiency and accuracy of femtosecond laser processing. To truly apply this fine technology on a large scale in the field of metal processing, more in-depth study of the system of femtosecond laser and its interaction with the different properties of the metal material is still needed.
  • [1]
    MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. DOI: 10.1038/187493a0
    [2]
    XIAO K H, LI M A, XIE Y, et al. Research status and prospect of femtosecond laser processing materials[J]. Journal of University of Science and Technology Liaoning, 2019, 42(3): 179-185(in Chin-ese).
    [3]
    SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti∶ sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44. DOI: 10.1364/OL.16.000042
    [4]
    SQUIER J, COE S, CLAY K, et al. An alexandrite pumped Nd∶ glass regenerative amplifier for chirped pulse amplification[J]. Optics Communications, 1992, 92(1/3): 73-78.
    [5]
    LITTLE D J, AMS M, DEKKER P, et al. Femtosecond laser modification of fused silica: The effect of writing polarization on Si—O ring structure[J]. Optics Express, 2008, 16(24): 20029-20037. DOI: 10.1364/OE.16.020029
    [6]
    MAHMOOD A S, VENKATAKRISHNAN K, TAN B. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction[J]. Nanoscale Research Le-tters, 2013, 8(1): 477-477. DOI: 10.1186/1556-276X-8-477
    [7]
    WANG Zh J, JIA W, NI X Ch, et al. Numerical simulation of the heat affected zone of nickel ablated with femtosecond laser[J]. Laser Technology, 2007, 31(6): 578-580(in Chinese).
    [8]
    GAO Sh M, YAN K Zh, HAN P G, et al. Study on periodic structures on Si surface induced by femtosecond laser[J]. Laser Techno-logy, 2015, 39(3): 395-398(in Chinese).
    [9]
    YANG H, YU X Ch, WU Y F, et al. Research progress and application of femtosecond laser in micromachining[J]. Applied Laser, 2019, 39(2): 346-354(in Chinese).
    [10]
    LI W B. Research on femtosecond laser processing of silicon carbide ceramic material[D]. Harbin: Harbin Institute of Technology, 2011: 2-6(in Chinese).
    [11]
    YANG J J. Femtosecond laser "cold" micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(3): 42-52(in Chinese).
    [12]
    ZHU P F. Research on ultrafast laser processing technology[D]. Xi'an: X'an Technological University, 2014: 10-36(in Chinese).
    [13]
    ZHOU Y L. Study on mechanism and process of laser processing 3-D printing titanium alloy sheet[D]. Beijing: Beijing University of Technology, 2018: 2-35(in Chinese).
    [14]
    PECHOLT B, VENDAN M, DONG Y Y, et al. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(3): 239-250.
    [15]
    LI X X, JIA T Q, FENG D H, et al. Ablation mechanism of alumina under ultrashort pulse laser irradiation[J]. Acta Physica Sinica, 2004, 53(7): 2154-2158(in Chinese). DOI: 10.7498/aps.53.2154
    [16]
    SUN Y Zh, LIN X H, CHEN Y F. Theoretical model investigation about the mechanism of ultrashort-pulse laser ablation fused silica[J]. Journal of Functional Materials and Devices, 2008, 14(1): 38-42(in Chinese).
    [17]
    ANISIMOV S I, KAPELIOVICH B L, PEMLMAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Soviet Journal of Experimental and Theoretical Physics, 1974, 39: 375-377.
    [18]
    XU B, WU X Y, LING Sh Q, et al. Numerical simulation of thermal electron emission in metal films ablated by multi-pulse femtose-cond laser[J]. Laser & Optoelectronics Progress, 2012, 49(8): 083201(in Chinese).
    [19]
    XU Y, NING R X, BAO J, et al. Mechanism analysis of ablation of metal by femtosecond pulse laser[J]. Laser & Infrared, 2019, 49(4): 432-437(in Chinese).
    [20]
    WANG S Y, REN Y P, CHENG Ch W, et al. Micromachining of copper by femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 302-308. DOI: 10.1016/j.apsusc.2012.10.200
    [21]
    SAGHEBFAR M, TEHRANI M K, DARBANI S M R, et al. Erratum to: Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations[J]. Applied Physics, 2017, A123(2): 130(2017).
    [22]
    LI J L, WANG B F, WANG Zh W, et al. Thermal relaxation in ablation process of aluminum sheet by femtosecond laser [J]. Hydromechatronics Engineering, 2019, 47(24): 92-97.
    [23]
    LI Q, LAO H, LIN J, et al. Study of femtosecond ablation on aluminum film with 3-D two-temperature model and experimental verifications[J]. Applied Physics, 2011, A105(1): 125-129.
    [24]
    ZHANG W K, DAI W, ZHENG Zh Zh, et al. Numerical simulation and verification of free-surface evolution in laser processing of H13 tool steel[J]. Chinese Journal of Lasers, 2019, 46(7): 0702002(in Chinese). DOI: 10.3788/CJL201946.0702002
    [25]
    SHAN D Y, CHEN T. Simulation and process research of laser po-lishing die steel[J]. Electromachining & Mould, 2019(5): 44-50(in Chinese).
    [26]
    WANG T, WANG J, YAO T, et al. Modeling and simulation of metal surface in laser polishing[J]. Laser & Infrared, 2019, 49(9): 1068-1074(in Chinese).
    [27]
    VADALI M, MA C, DUFFLE N A, et al. Pulsed laser micro poli-shing: Surface prediction model[J]. Journal of Manufacturing Processes, 2012, 14(3): 307-315. DOI: 10.1016/j.jmapro.2012.03.001
    [28]
    ZHOU L, JIANG Y, ZHANG P, et al. Numerical and experimental investigation of morphological modification on fused silica using CO2 laser ablation[J]. Materials (Basel), 2019, 12(24): 4109. DOI: 10.3390/ma12244109
    [29]
    XU G, DAI Y, CUI J, et al. Simulation and experiment of femtose-cond laser polishing quartz material[J]. Integrated Ferroelectrics, 2017, 181(1): 60-69. DOI: 10.1080/10584587.2017.1352332
    [30]
    ZHANG X Zh, XIA F, XU J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Physica Sinica, 2017, 66(14): 144207(in Chinese). DOI: 10.7498/aps.66.144207
    [31]
    GUAY J M, CHARRON M, CÔTÉ G, et al. Enhanced plasmonic coloring of silver and formation of large laser-induced periodic surface structures using multi-burst picosecond pulses[J]. Advanced Optical Materials, 2016, 6(17): 1800189.
    [32]
    HU G, GUAN K, LU L, et al. Engineered functional surfaces by laser microprocessing for biomedical applications[J]. Engineering, 2018, 4(6): 822-830. DOI: 10.1016/j.eng.2018.09.009
    [33]
    DJOUDER M, LAMROUS O, MITICHE M D, et al. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation[J]. A-pplied Surface Science, 2013, 280: 711-714. DOI: 10.1016/j.apsusc.2013.05.047
    [34]
    KODAMA S, YAMAGUCHI H, SHIMADA K, et al. Control of short-pulsed laser induced periodic surface structures with machining-picosecond laser nanotexturing with magnetic abrasive finishing[J]. Precision Engineering, 2019, 60: 428-436. DOI: 10.1016/j.precisioneng.2019.06.015
    [35]
    RUDENKO A, MAUCLAIR C, GARRELIE F, et al. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations[J]. Physical Review, 2019, B99, 235412.
    [36]
    ABOUSALEH A, KARIM E T, MAURICE C, et al. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr[J]. Applied Physics, 2018, A124(4): 308(2018).
    [37]
    YANG Q B, WANG H J, HUANG Y, et al. Experimental study on nanosecond laser processing of Ti6Al4V alloy [J]. Optical Technique, 2019, 45(2): 245-250(in Chinese).
    [38]
    YANG Y, LOU R, CHEN X, et al. Influence of energy fluence and overlapping rate of femtosecond laser on surface roughness of Ti-6Al-4V[J]. Optical Engineering, 2019, 58(10): 106107.
    [39]
    PERRY T L, WERSCHMOELLER D, LI X, et al. Pulsed laser po-lishing of micro-milled Ti6Al4V samples[J]. Journal of Manufacturing Processes, 2009, 11(2): 74-81. DOI: 10.1016/j.jmapro.2009.10.001
    [40]
    LIANG Ch Y, HU Y Zh, LIU N, et al. Laser polishing of Ti6Al4V fabricated by selective laser melting[J]. Metals, 2020, 10(2): 191. DOI: 10.3390/met10020191
    [41]
    CHEN F, LIU Q M, DU P, et al. Experimental study on femtosecond laser processing of GH4099 honeycomb core[J]. Aeronautical Manufacturing Technology, 2019, 62(s2): 46-51(in Chinese).
    [42]
    HUANG J F, WEI X, XIE X Zh, et al. Research on influences of condition parameters on laser polishing process[J]. Laser & Opto-electronics Progress, 2008, 45(12): 20-24(in Chinese).
    [43]
    PIMENOV S M, KONONENKO V V, RALCHENKO V G, et al. Laser polishing of diamond plates[J]. Applied Physics, 1999, A69(1): 81-88.
    [44]
    OSTHOLT R, WILLENBORG E, WISSENBACH K. Laser polishing of metallic freeform surfaces[J]. Journal of Laser Applications, 2010, 2010(1): 597-603.
    [45]
    JULIANA D S S, SEIFERT H J, WILHELM P. Laser surface modification and polishing of additive manufactured metallic parts[J]. Procedia CIRP, 2018, 74: 280-284. DOI: 10.1016/j.procir.2018.08.111
    [46]
    CHEN Y, TSAI W, LIU S, et al. Picosecond laser pulse polishing of ASP23 steel[J]. Optics and Laser Technology, 2018, 107: 180-185. DOI: 10.1016/j.optlastec.2018.05.025
    [47]
    GLOOR S, LUTHY W, WEBER H P. Laser polishing of extended diamond films[J]. Diamond Films and Technology, 1997, 7(4): 233-240.

Catalog

    Article views (5) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return