Advanced Search
CHEN Xiaowen, WEI Xiaoqin, TANG Mingyue, DENG Hanling. Region division of hollow beams in non-Kolmogorov turbulent path[J]. LASER TECHNOLOGY, 2021, 45(3): 307-312. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.007
Citation: CHEN Xiaowen, WEI Xiaoqin, TANG Mingyue, DENG Hanling. Region division of hollow beams in non-Kolmogorov turbulent path[J]. LASER TECHNOLOGY, 2021, 45(3): 307-312. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.007

Region division of hollow beams in non-Kolmogorov turbulent path

More Information
  • Received Date: July 07, 2020
  • Revised Date: August 03, 2020
  • Published Date: May 24, 2021
  • To study the relationship between the region range and the parameters of hollow beam in the non-Kolmogorov turbulence propagation path and the beam expansion in different regions, the expressions for the mean-squared width, Rayleigh range, and turbulence distance of hollow beams propagating through non-Kolmogorov turbulence were given by using the extended Huygens-Fresnel principle, and the propagation path was divided into three regions by using the turbulence distance for numerical analysis. The results show that the length of region Ⅰ and region Ⅱ and the starting point of region Ⅲ decrease first and then increase with the increasing of the turbulence generalized exponent parameter α (There is a minimal value, when α=3.11), and increase with the increasing of obscure ratio η and beam orders M(and N). When the value of M(and N)is small(M(and N) < 3), the effect of turbulence on beam spread in Rayleigh range can not be ignored. The larger M(and N)and η is, the easier it is to ignore the effect of turbulence on beam spread in Rayleigh range. In the transmission path, the beam enters area Ⅰ, area Ⅱ and area Ⅲ in turn, and then expands more and more violently. With the increasing of M(and N)and η, the length of region Ⅱ and the starting point of region Ⅲ increase more significantly than the length of region Ⅰ. The results provide a reference for the application of hollow beam propagation in turbulence.
  • [1]
    WANG S C H, PLONUS M A. Optical beam propagation for a partially coherent source in the turbulent atmosphere[J]. Journal of the Optical Society of America, 1979, A69(9): 1297-1304.
    [2]
    GBUR G, WOLF E. Spreading of partially coherent beams in random media[J]. Journal of the Optical Society of America, 2002, A19(8): 1592-1598. http://www.opticsinfobase.org/abstract.cfm?uri=JOSAA-19-8-1592
    [3]
    CHEN X W, JI X L. Influence of turbulence on spatial correlation properties of partially coherent annular beams[J]. Chinese Journal of Lasers, 2009, 36(9): 2319-2325(in Chinese). DOI: 10.3788/CJL20093609.2319
    [4]
    TANG M Y, CHEN X W, JI X L. Influence of turbulence on propagation and far-field beam quality of M×N cosh-Gaussian bams[J]. Acta Photonica Sinica, 2009, 38(3): 713-718 (in Chinese).
    [5]
    CHEN X W, JI X L. Consistency of the directionality of partially coherent beams in turbulence expressed in terms of the angular spread and the far-field average intensity[J]. Chinese Physics, 2010, B19(2): 024203. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201002040.htm
    [6]
    TOSELLI I, ANDREWS L C, PHILLIPS R L, et al. Free space optical system performance for laser beam propagation through non Kolmogorov turbulence[J]. Optical Engineering, 2008, 47(2): 023003. http://spie.org/x648.html?product_id=698707
    [7]
    DENG J P, JI X L, LU L. Propagation of polychromatic partially coherent decentred laser beams propagating in non-Kolmogorov turbulence[J]. Acta Physica Sinica, 2013, 62(14): 144211(in Chin-ese). DOI: 10.7498/aps.62.144211
    [8]
    XU H F, CUI Z F, QU J. Propagation of elegant Laguerre-Gaussian beam in non-Kolmogorov turbulence[J]. Optics Express, 2011, 19(22): 21163-21173. DOI: 10.1364/OE.19.021163
    [9]
    ZHOU Zh L, YUAN Y Sh, SHU J, et al. Beam wander of a partially coherent-like beam in non-Kolmogorov turbulence[J]. Laser Techno-logy, 2019, 43(4): 143-148 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201270971198.html
    [10]
    LIU D J, ZHONG H Y, WANG G Q, et al. Propagation of a radial phase-locked partially coherent elegant Laguerre-Gaussian beam array in non-Kolmogorov medium[J]. Applied Physics, 2019, B 125(3): 52.1-52.14. DOI: 10.1007/s00340-019-7161-8
    [11]
    LUO Ch K, LU F, YIN Ch X, et al. Numerical study on transmi-ssion performance of Laguerre-Gaussian beam in non-Kolmogorov turbulence[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120101 (in Chinese).
    [12]
    CHENG M J, GUO L X, LI J T. Influence of moderate-to-strong a-nisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere[J]. Chinese Physics, 2018, B27(5): 054203. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201805029.htm
    [13]
    WU G H, GUO H, YU S, et al. Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(5): 715-717. DOI: 10.1364/OL.35.000715
    [14]
    JI X L, ZHONG E T, LV B D. Spreading of partially coherent flattened Gaussian beams propagating through turbulent media[J]. Journal of Modern Optics, 2006, 53(12): 1753-1763. DOI: 10.1080/09500340600590588
    [15]
    TANG M Y, LI B Zh. Turbulence distance of cosh-Gaussian beams in non-Kolmogorov turbulence[J]. Laser Technology, 2015, 39(4): 581-584 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201504034.htm
    [16]
    CHEN X W, TANG M Y, HE C, et al. Spreading of apertured partially coherent beams in turbulent media[J]. Optik, 2014, 125(20): 6032-6036. DOI: 10.1016/j.ijleo.2014.06.098
    [17]
    YANG J, WANG H, ZHANG X. Influence of atmospheric turbulence on the Rayleigh range of partially coherent laser[J]. Laser Technology, 2016, 40(3): 456-460 (in Chinese).
    [18]
    YANG T, JI X L. Regions of spreading of laser beams propagating through non-Kolmogorov atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(5): 0501001(in Chinese). DOI: 10.3788/AOS201535.0501001
    [19]
    LIU D J, LUO X X, YIN H M. Effect of optical system and turbulent atmosphere on the average intensity of partially coherent flat-topped vortex hollow beam[J]. Optik, 2017, 130(C): 227-236. http://www.sciencedirect.com/science/article/pii/S003040261630969X
    [20]
    HONG X R, ZHENG Y L, TANG R A, et al. Propagation characteristics of a hollow Gaussian laser beam in a tapered plasma channel[J]. Physics of Plasmas, 2020, 27(4): 043109. DOI: 10.1063/1.5145348
    [21]
    ALAVINEJAD M, TAHERABADI G, HADILOU N, et al. Changes in the coherence properties of partially coherent dark hollow beam propagating through atmospheric turbulence[J]. Optics Communications, 2013, 288(1): 1-6. http://www.sciencedirect.com/science/article/pii/S0030401812008589
    [22]
    XU Y G, YANG T, DAN Y Q, et al. Average intensity and spreading of partially coherent dark hollow beam through the atmospheric turbulence along a slant path[J]. Optik, 2016, 127(19): 7794-7802. DOI: 10.1016/j.ijleo.2016.05.081
  • Cited by

    Periodical cited type(1)

    1. 胥晗,孙科学,徐荣青. 基于LSPR效应的金属-半导体-金属光电探测器性能的研究. 激光与光电子学进展. 2025(03): 87-93 .

    Other cited types(0)

Catalog

    Article views (6) PDF downloads (6) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return