Citation: | WANG Qianghui, HUA Wenshen, HUANG Fuyu, YAN Yang, ZHANG Yan, SUO Wenkai. Hyperspectral anomaly detection algorithm based on spectral angle background purification[J]. LASER TECHNOLOGY, 2020, 44(5): 623-627. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.016 |
[1] |
YUAN J, ZHANG Y J, GAO F P.A review of linear hyperspectral unmixing models[J].Journal of Infrared and Millimeter Waves, 2018, 37(5):553-571(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a9d6f3c7394fe00e0b76c2b62847151
|
[2] |
QI Y F, MA Zh Y.Hyperspectral image classification method based on neighborhood spectra and probability cooperative representation[J].Laser Technology, 2019, 43(4):448-452(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201904003
|
[3] |
SHAN L X. Hyperspectral image sub-pixel small target detection [D]. Xi'an: Xi'an University of Electronic Science and Technology, 2017: 16-24(in Chinese).
|
[4] |
BAJORSKI P. Target detection under misspecified models in hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 470-477. DOI: 10.1109/JSTARS.2012.2188095
|
[5] |
SUN L, BAO J H, LIU Y Ch.Analysis of target detection algorithm for hyperspectral images[J].Science and Mapping Science, 2012, 37(1):131-132(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CHKD201201045.htm
|
[6] |
REED I S, YU X L. Adaptive multi-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Acoustics Speech and Signal Process, 1990, 38(10): 1760-1766. DOI: 10.1109/29.60107
|
[7] |
YU X L, HOFF L E, REED I S, et al. Automatic target detection and recognition in multiband imagery: A unified ML detection and estimation approach[J]. IEEE Transactions on Image Processing, 1997, 6(1): 143-156. https://ieeexplore.ieee.org/document/552103
|
[8] |
DU Sh Sh, LI Sh Y, ZENG Zh Y. Influence of background uncertainty on the detection of hyperspectral anomaly targets[J].Journal of PLA University of Science and Technology(Natural Science Edition), 2016, 17(6):598-604(in Chinese). http://www.researchgate.net/publication/318508725_Influence_of_background_uncertainty_on_hyperspectral_anomaly_target_detection
|
[9] |
SMETEK T E, BAUER K W. Finding hyperspectral anomalies using multivariate outlier detection[C]//Aerospace Conference, 2007 IEEE. New York, USA: IEEE, 2007: 1-24.
|
[10] |
ZHAO Ch H, WANG X P, YAN Y M.Hyperspectral anomaly detection algorithm based on density background purification[J].Journal of Harbin Engineering University, 2016, 37(12):1722-1727(in Chinese).
|
[11] |
ZHAO Ch H, LI J, MEI F.A kernel-weighted RX hyperspectral image anomaly detection algorithm[J].Journal of Infrared and Millimeter Waves, 2010, 29(5):378-382(in Chinese). http://www.oalib.com/paper/1596216
|
[12] |
DU B, ZHANG L P. Random-selection-based anomaly detector for hyperspectral imagery[J].IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(5):1578-1589. DOI: 10.1109/TGRS.2010.2081677
|
[13] |
TAITANO Y P, GEIER B A, BAUER K W. A locally adaptable iterative RX detector[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010(1) : 341908. DOI: 10.1155/2010/341908
|
[14] |
LIU W M, CHANG C I. Multiple-window anomaly detection for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2):644-658. http://www.researchgate.net/publication/224383075_Multiple-Window_Anomaly_Detection_for_Hyperspectral_Imagery
|
[15] |
ZHAO Ch H, HU Ch M.Hyperspectral image anomaly detection algorithm based on target orthogonal subspace projection weighting[J].Journal of Jilin University, 2011, 41(5):1468-1474(in Chinese). https://www.researchgate.net/publication/290632803_A_hyperspectral_anomaly_detection_algorithm_based_on_orthogonal_subspace_projection
|
[16] |
MEI F, ZHAO Ch H. Analysis of nuclear RX hyperspectral image anomaly detection based on spatial filtering[J].Journal of Harbin Engineering University, 2009, 30(6): 697-702(in Chinese). https://www.zhangqiaokeyan.com/academic-journal-cn_journal-harbin-engineering-university_thesis/020129366408.html
|
[17] |
CHANG C I, HEINZ D C. Constrained subpixel detection for remotely sensed images[J].IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(3):1144-1159. http://www.researchgate.net/publication/3202346_Constrained_subpixel_detection_for_remotely_sensed_images
|
1. |
邓磊,周冰,应家驹,陈玉丹,王强辉,赵佳乐. 联合空谱信息的高光谱图像目标检测方法. 陆军工程大学学报. 2025(01): 53-60 .
![]() | |
2. |
赵佳乐,周冰,王广龙,应家驹,王强辉,邓磊. 基于广义逆矩阵的BRDF模型参数拟合方法. 激光技术. 2023(03): 407-412 .
![]() | |
3. |
金椿柏,杨桄,雷岩,吴迪,刘文婧. Relief-F筛选波段的植被伪装揭露研究. 激光技术. 2022(01): 125-128 .
![]() | |
4. |
秦轶翚,马涛. 分布式光纤应变传感网络节点异常状态识别方法. 激光杂志. 2022(06): 211-215 .
![]() | |
5. |
张利剑,陈晋鹏. 基于扩展Jarvis-Patrick聚类的异常检测算法优化及检测仿真. 电子设计工程. 2022(13): 100-104 .
![]() | |
6. |
曾宏志,史洪松. 面向光通信网络系统的异常入侵在线检测研究. 激光杂志. 2022(12): 139-143 .
![]() |