Advanced Search
WANG Qianghui, HUA Wenshen, HUANG Fuyu, YAN Yang, ZHANG Yan, SUO Wenkai. Hyperspectral anomaly detection algorithm based on spectral angle background purification[J]. LASER TECHNOLOGY, 2020, 44(5): 623-627. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.016
Citation: WANG Qianghui, HUA Wenshen, HUANG Fuyu, YAN Yang, ZHANG Yan, SUO Wenkai. Hyperspectral anomaly detection algorithm based on spectral angle background purification[J]. LASER TECHNOLOGY, 2020, 44(5): 623-627. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.016

Hyperspectral anomaly detection algorithm based on spectral angle background purification

More Information
  • Received Date: September 10, 2019
  • Revised Date: November 19, 2019
  • Published Date: September 24, 2020
  • In order to solve the problem of inaccurate results and high false alarm rate when using hyperspectral image for anomaly detection, an anomaly detection algorithm based on spectral angle background purification was proposed. With this algorithm, which is based on the local RX algorithm, the the anomalous components in the background pixels between the inner and outer windows could be separated according to the spectral angular distance. The purified background pixels were then obtained, following which the anomaly detection could be performed. In order to verify the effectiveness of the algorithm, two sets of airborne visible infrared imaging spectrometer real hyperspectral data were selected for simulation experiments. The corresponding data was then compared with that of the classical global RX and local RX algorithms. The results show that, the area under the curve of the two sets of data is respectively increased by 0.0317 and 0.0053 compared with that of the local RX algorithm. These results provide a reference for the next research direction.
  • [1]
    YUAN J, ZHANG Y J, GAO F P.A review of linear hyperspectral unmixing models[J].Journal of Infrared and Millimeter Waves, 2018, 37(5):553-571(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a9d6f3c7394fe00e0b76c2b62847151
    [2]
    QI Y F, MA Zh Y.Hyperspectral image classification method based on neighborhood spectra and probability cooperative representation[J].Laser Technology, 2019, 43(4):448-452(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201904003
    [3]
    SHAN L X. Hyperspectral image sub-pixel small target detection [D]. Xi'an: Xi'an University of Electronic Science and Technology, 2017: 16-24(in Chinese).
    [4]
    BAJORSKI P. Target detection under misspecified models in hyperspectral images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 470-477. DOI: 10.1109/JSTARS.2012.2188095
    [5]
    SUN L, BAO J H, LIU Y Ch.Analysis of target detection algorithm for hyperspectral images[J].Science and Mapping Science, 2012, 37(1):131-132(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CHKD201201045.htm
    [6]
    REED I S, YU X L. Adaptive multi-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Acoustics Speech and Signal Process, 1990, 38(10): 1760-1766. DOI: 10.1109/29.60107
    [7]
    YU X L, HOFF L E, REED I S, et al. Automatic target detection and recognition in multiband imagery: A unified ML detection and estimation approach[J]. IEEE Transactions on Image Processing, 1997, 6(1): 143-156. https://ieeexplore.ieee.org/document/552103
    [8]
    DU Sh Sh, LI Sh Y, ZENG Zh Y. Influence of background uncertainty on the detection of hyperspectral anomaly targets[J].Journal of PLA University of Science and Technology(Natural Science Edition), 2016, 17(6):598-604(in Chinese). http://www.researchgate.net/publication/318508725_Influence_of_background_uncertainty_on_hyperspectral_anomaly_target_detection
    [9]
    SMETEK T E, BAUER K W. Finding hyperspectral anomalies using multivariate outlier detection[C]//Aerospace Conference, 2007 IEEE. New York, USA: IEEE, 2007: 1-24.
    [10]
    ZHAO Ch H, WANG X P, YAN Y M.Hyperspectral anomaly detection algorithm based on density background purification[J].Journal of Harbin Engineering University, 2016, 37(12):1722-1727(in Chinese).
    [11]
    ZHAO Ch H, LI J, MEI F.A kernel-weighted RX hyperspectral image anomaly detection algorithm[J].Journal of Infrared and Millimeter Waves, 2010, 29(5):378-382(in Chinese). http://www.oalib.com/paper/1596216
    [12]
    DU B, ZHANG L P. Random-selection-based anomaly detector for hyperspectral imagery[J].IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(5):1578-1589. DOI: 10.1109/TGRS.2010.2081677
    [13]
    TAITANO Y P, GEIER B A, BAUER K W. A locally adaptable iterative RX detector[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010(1) : 341908. DOI: 10.1155/2010/341908
    [14]
    LIU W M, CHANG C I. Multiple-window anomaly detection for hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2):644-658. http://www.researchgate.net/publication/224383075_Multiple-Window_Anomaly_Detection_for_Hyperspectral_Imagery
    [15]
    ZHAO Ch H, HU Ch M.Hyperspectral image anomaly detection algorithm based on target orthogonal subspace projection weighting[J].Journal of Jilin University, 2011, 41(5):1468-1474(in Chinese). https://www.researchgate.net/publication/290632803_A_hyperspectral_anomaly_detection_algorithm_based_on_orthogonal_subspace_projection
    [16]
    MEI F, ZHAO Ch H. Analysis of nuclear RX hyperspectral image anomaly detection based on spatial filtering[J].Journal of Harbin Engineering University, 2009, 30(6): 697-702(in Chinese). https://www.zhangqiaokeyan.com/academic-journal-cn_journal-harbin-engineering-university_thesis/020129366408.html
    [17]
    CHANG C I, HEINZ D C. Constrained subpixel detection for remotely sensed images[J].IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(3):1144-1159. http://www.researchgate.net/publication/3202346_Constrained_subpixel_detection_for_remotely_sensed_images
  • Cited by

    Periodical cited type(6)

    1. 邓磊,周冰,应家驹,陈玉丹,王强辉,赵佳乐. 联合空谱信息的高光谱图像目标检测方法. 陆军工程大学学报. 2025(01): 53-60 .
    2. 赵佳乐,周冰,王广龙,应家驹,王强辉,邓磊. 基于广义逆矩阵的BRDF模型参数拟合方法. 激光技术. 2023(03): 407-412 . 本站查看
    3. 金椿柏,杨桄,雷岩,吴迪,刘文婧. Relief-F筛选波段的植被伪装揭露研究. 激光技术. 2022(01): 125-128 . 本站查看
    4. 秦轶翚,马涛. 分布式光纤应变传感网络节点异常状态识别方法. 激光杂志. 2022(06): 211-215 .
    5. 张利剑,陈晋鹏. 基于扩展Jarvis-Patrick聚类的异常检测算法优化及检测仿真. 电子设计工程. 2022(13): 100-104 .
    6. 曾宏志,史洪松. 面向光通信网络系统的异常入侵在线检测研究. 激光杂志. 2022(12): 139-143 .

    Other cited types(3)

Catalog

    Article views (5) PDF downloads (18) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return