Advanced Search
ZONG Qingshuang, BIAN Qi, MA Haoda, YANG Lin, ZUO Junwei, BO Yong, PENG Qinjun. The research progress of the new sodium beacon laser[J]. LASER TECHNOLOGY, 2020, 44(4): 404-410. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.002
Citation: ZONG Qingshuang, BIAN Qi, MA Haoda, YANG Lin, ZUO Junwei, BO Yong, PENG Qinjun. The research progress of the new sodium beacon laser[J]. LASER TECHNOLOGY, 2020, 44(4): 404-410. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.002

The research progress of the new sodium beacon laser

More Information
  • Received Date: August 12, 2019
  • Revised Date: September 18, 2019
  • Published Date: July 24, 2020
  • Adaptive optics technology was widely used in large-scale ground-based optical telescope to correct the wavefront distortion caused by atmospheric disturbance, make the telescope reach the resolution near diffraction limit, and realize the clear imag-ing of the observed object. As the beacon source of adaptive optical correction, laser sodium guide star was one of the core technologies of adaptive optical telescope. The latest research progress of the new sodium beacon laser was demonstrated, include the 589nm optical pumped vertical external cavity surface emitting semiconductor sodium guide star laser and the all solid-state laser with Dy3+-doped crystal as gain medium, which can directly emit 589nm laser. Due to their advantages of small size, high efficiency, high reliability, low cost and easy maintenance, these schemes are considered as the possible development direction of the new generation of sodium guide star lasers.
  • [1]
    CUNNINGHAM C. Future optical technologies for telescopes [J]. Nature Photonics, 2009, 3(5): 239-241. DOI: 10.1038/nphoton.2009.49
    [2]
    MEYER L, GHEZ A M, SCHODEL R, et al. The shortest-known-period star orbiting our Galaxy’s supermassive black hole [J]. Science, 2012, 338(6103):84-87. DOI: 10.1126/science.1225506
    [3]
    FOY R, LABEYRIE A. Feasibility of adaptive telescope with laser probe [J]. Astronomy and Astrophysics, 1985, 152: L29-L31. DOI: 10.1002/asna.2113060608
    [4]
    PRIMMERMAN C A, MURPHY D V, PAGE D A, et al. Compensation of atmospheric optical distortion using a synthetic beacon [J]. Nature, 1991, 353(6340):141-143. DOI: 10.1038/353141a0
    [5]
    FUGATE R Q, FRIED D L, AMEER G A, et al. Measurement of atmospheric wavefront distortion using scattered light form a laser guide-star [J]. Nature, 1991, 353:144-146. DOI: 10.1038/353144a0
    [6]
    THOMPSON L A, GARDNER C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature, 1987, 328:229-231. DOI: 10.1038/328229a0
    [7]
    HUMPHREYS R A, PRIMMERMAN C A, BRADLEY L C, et al. Atmospheric-turbulence measurements using a synthetic beacon in the mesospheric sodium layer [J]. Optics Letters, 1991, 16(18):1367-1369. DOI: 10.1364/OL.16.001367
    [8]
    DRUMMOND J, TELLE J, DENMAN C, et al. Photometry of a sodium laser guide star at the starfire optical range [J]. Publications of the Astronomical Society of the Pacific, 2004, 116(817):278-289. DOI: 10.1086/382756
    [9]
    FRIEDMAN H W. Laser system design for the generation of a sodium-layer laser guide star [J]. Proceedings of the SPIE, 1993, 1859:251-262. DOI: 10.1117/12.145503
    [10]
    QUIRRENBACH A, HACKENBERG W, HOLSTENBERG H C, et al. The sodium laser guide star system of ALFA [J]. Proceedings of the SPIE, 1997, 3126:35-43. DOI: 10.1117/12.279051
    [11]
    BIAN Q, BO Y, ZUO J W, et al. High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping [J]. Optics Letters, 2016, 41(8):1732-1735. DOI: 10.1364/OL.41.001732
    [12]
    SAITO N, AKAGAWA K, ITO M, et al. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd∶YAG lasers[J]. Optics Letters, 2007, 32(14):1965-1967. DOI: 10.1364/OL.32.001965
    [13]
    LEE I, JALALI M, VANASSE N, et al. 20W and 50W guide star laser system update for the Keck I and gemini south telescopes [J]. Proceedings of the SPIE, 2008, 7015:70150N. DOI: 10.1117/12.790534
    [14]
    PENNINGTON D M, DAWSON J W, DROBSHOFF A, et al. Compact fiber laser system for 589nm laser guide star generation [C]// 2005 Conference on Lasers and Electro-optics. New York,USA:IEEE, 2005: 532.
    [15]
    TAYLOR L R, FENG Y, CALIA D B. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18(8): 8540-8555. DOI: 10.1364/OE.18.008540
    [16]
    HUA L L, YANG Y. Characteristics and development of optically pumped vertical external cavity surface emitting lasers [J]. Materials Review, 2013, 27(6):64-69(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CLDB201311013.htm
    [17]
    LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting laser [J]. Laser Technology, 2018, 42(4): 556-561(in Chinese).
    [18]
    KUZNETSOV M, HAKIMI F, SPRAGUE R, et al. High-power (0.5W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams [J]. IEEE Photonics Technology Letters, 1997, 9(8):1063-1065. DOI: 10.1109/68.605500
    [19]
    GERSTER E, HAHN C, LORCH S, et al. Frequency-doubled GaAsSb/GaAs semiconductor disk laser emitting at 589nm [C]// 2003 the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society. New York, USA: IEEE, 2003: 981-982.
    [20]
    MOLONEY J V, HADER J, ZAKHARIAN A R. Closed-loop design and demonstration of an 1178nm multi-watt VECSEL for a Sodium Guidestar Source [C]//2007 Conference on Lasers and Electro-Optics (CLEO). New York, USA: IEEE, 2007:116.
    [21]
    FAN L, HESSENIUS C, FALLAHI M, et al. Highly strained InGaAs/GaAs vertical-external-cavity surface-emitting laser for the generation of coherent yellow-orange light [J]. Proceedings of the SPIE, 2008, 6871:687119. DOI: 10.1117/12.763529
    [22]
    FALLAHI M, FAN L, KANEDA Y, et al. 5W yellow laser by intra-cavity frequency doubling of high-power vertical-external-cavity surface-emitting laser [J]. IEEE Photonics Technology Letters, 2008, 20(20):1700-1702. DOI: 10.1109/LPT.2008.2003413
    [23]
    KANEDA Y, FALLAHI M, HADER J, et al. Compact narrow-linewidth 589 nm laser source [C]//2009 Conference on Lasers and Electro-Optics (CLEO) and 2009 Conference on Quantum electronics and Laser Science Conference. New York, USA: IEEE, 2009: 17-26.
    [24]
    LEINONEN T, HRKNEN A, KORPIJRVI V M, et al. High-power narrow-linewidth optically pumped dilute nitride disk laser with emission at 589nm [J]. Proceedings of the SPIE, 2010, 7720:772016. DOI: 10.1117/12.854747
    [25]
    LEINONEN T, HÄRKÖNEN A, KORPIJRVI V M, et al. 589nm multi-watt narrow linewidth optically pumped semiconductor laser for laser guide stars[C]//2010 Advanced Solid-State Photonics. New York, USA: IEEE, 2010: 10.
    [26]
    HESSENIUS C, GUINET P Y, LUKOWSKI M. 589nm single-frequency VECSEL for sodium guide star applications [J]. Proceedings of the SPIE, 2012, 8242:82420E. DOI: 10.1117/12.909697
    [27]
    LEINONEN T, KORPIJRVI V M, HRKNEN A, et al. Recent advances in the development of yellow-orange GaInNAs-based semiconductor disk lasers [J]. Proceedings of the SPIE, 2012, 8242: 824208. DOI: 10.1117/12.906204
    [28]
    BERGER J D, CHILLA J L A, GOVORKOV S, et al. Towards a practical sodium guide star laser source: Design for >50Watt LGS based on OPSL [J]. Proceedings of the SPIE, 2012, 8447: 84470G.
    [29]
    ALFORD W J, FETZER G J, EPSTEIN R J, et al. Optically pumped semiconductor lasers for precision spectroscopic applications [J]. IEEE Photonics Technology Letters, 2013, 49(8):719-727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b21ce49c6b137967148b2a8a60d039b8
    [30]
    KANTOLA E, LEINONEN T, RANTA S, et al. High-efficiency 20W yellow VECSEL[J]. Optics Express, 2014, 22(6):6372-6380. DOI: 10.1364/OE.22.006372
    [31]
    YANG J H, DAI Sh X, WEN L, et al. Mixed heavy metal effect on emission properties of Er3+-doped borosilicate glasses [J]. Chinese Optics Letters, 2003, 1(5):294-295. DOI: 10.1023/A:1022289509702
    [32]
    GEBAVI H, MILANESE D, BALDA R, et al. Spectroscopy and optical characterization of thulium doped TZN glasses [J]. Journal of Physics, 2010, D43(13):135104-135111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b11d241f184e4f8a1d09b65ee6c131c
    [33]
    XU Sh Q, SUN H T, DAI Sh X, et al. Upconversion luminescence of Tm3+/Yb3+-codoped oxyhalide tellurite glasses [J]. Solid State Communications, 2005, 133(2):89-92. DOI: 10.1016/j.ssc.2004.10.010
    [34]
    PENG B, IZUMITANI T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ [J]. Optics Materials, 1995, 4(6):797-810. DOI: 10.1016/0925-3467(95)00032-1
    [35]
    ZHOU B, TAO L L, TSANG Y H, et al. Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses[J]. Optics Express, 2012, 20(11):12205-12211. DOI: 10.1364/OE.20.012205
    [36]
    ELIZEBETH A, THOMAS V, JOSE G, et al. Studies on the growth and optical characterization of dysprosium gadolinium oxalate single crystals [J]. Crystal Research Technology, 2004, 39(2):105-110. DOI: 10.1002/crat.200310156
    [37]
    BOWMAN S R, O’CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers [J]. Optics Express, 2012, 20(12):12906-12911. DOI: 10.1364/OE.20.012906
    [38]
    METZ P W, MOGLIA F, REICHERT F, et al. Novel rare earth solid state lasers with emission wavelengths in the visible spectral range [C]//2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference. New York,USA:IEEE, 2013: 201-230.
    [39]
    BOLOGNESI G, PARISI D, CALONICO D, et al. Yellow laser performance of Dy3+ in co-doped Dy, Tb∶LiLuF4 [J]. Optics Letters, 2014, 39(23):6628-6631. DOI: 10.1364/OL.39.006628
    [40]
    WANG Y, YOU Zh Y, LI J F, et al. Optical properties of Dy3+ ion in GGG laser crystal [J]. Journal of Physics, 2010, D43(7):075402-075407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a01ae190a3806c9168278e7f533f07f8
    [41]
    ZHAO W, ZHOU W W, WEI B, et al. Spectroscopic assessment of Dy3+∶LiLa(MoO4)2 crystal as an active medium for all-solid-state direct yellow-emitting lasers [J]. Journal of Alloys and Compounds, 2012, 538:136-143. DOI: 10.1016/j.jallcom.2012.05.109
    [42]
    WANG Y Q, ZHU Zh J, LI J F, et al. Spectral assessment analysis of Dy3+-doped Ca3La2(BO3)4 crystal: A candidate for solid state yellow lasers [J]. Laser Physics, 2014, 24(4):045804. DOI: 10.1088/1054-660X/24/4/045804
    [43]
    HUANG J H, CHEN Y J, HUANG J H, et al. Spectroscopic investigation of Dy3+∶Lu2Si2O7 single crystal: A potential 589nm laser medium [J]. Optics Materials, 2017, 72:156-160. DOI: 10.1016/j.optmat.2017.05.046

Catalog

    Article views (7) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return